Citation: | ZHAO Zhijin, ZHU Jiasheng, YE Xueyi, SHANG Junna. Intelligent Anti-jamming Decision Algorithm for Frequency Hopping Network Based on Multi-agent Fuzzy Deep Reinforcemnet Learning[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2814-2823. doi: 10.11999/JEIT210608 |
[1] |
WANG Qian, ZHANG Feng, ZHAO Jing, et al. Application of HBM2 data storage in time and frequency hopping network communication system[C]. The 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, China, 2020: 1799–1803.
|
[2] |
孙杜娟, 马迁, 王睿. 海上大型编队短波跳频组网问题研究[J]. 指挥控制与仿真, 2020, 42(1): 25–28.
SUN Dujuan, MA Qian, and WANG Rui. Research on the large warship fleet HF frequency hopping network[J]. Command Control &Simulation, 2020, 42(1): 25–28.
|
[3] |
王泽. 同步组网跳频电台网络系统的研究与实现[D]. [硕士论文], 北京化工大学, 2015.
WANG Ze. Research and implementation of frequency-hopping radio network system with synchronous networking[D]. [Master dissertation], Beijing University of Chemical Technology, 2015.
|
[4] |
古稀林, 王超, 冯志先, 等. 移动Ad-hoc网络中无线跳频频率资源分配机制研究[J]. 通信技术, 2019, 52(3): 646–652.
GU Xilin, WANG Chao, FENG Zhixian, et al. Wireless hopping-frequency planning algorithm in mobile ad-hoc network[J]. Communications Technology, 2019, 52(3): 646–652.
|
[5] |
崔佩璋, 全厚德, 张世杰. 跳频组网同频干扰消除方法研究[J]. 中国测试, 2014, 40(5): 115–118. doi: 10.11857/j.issn.1674-5124.2014.05.030
CUI Peizhang, QUAN Houde, and ZHANG Shijie. Research on eliminating co-channel interference of frequency-hopping communication network[J]. China Measurement &Test, 2014, 40(5): 115–118. doi: 10.11857/j.issn.1674-5124.2014.05.030
|
[6] |
YOO S J, WON J M, SEO M, et al. Dynamic frequency hopping channel management in cognitive radio ad-hoc networks[C]. The 2015 21st Asia-Pacific Conference on Communications, Kyoto, Japan, 2015: 422–426.
|
[7] |
罗明刚. 无线通信抗干扰技术分析[J]. 中国新通信, 2020, 22(12): 10–11. doi: 10.3969/j.issn.1673-4866.2020.12.009
LUO Minggang. Analysis of wireless communication anti-jamming technology[J]. China New Telecommunications, 2020, 22(12): 10–11. doi: 10.3969/j.issn.1673-4866.2020.12.009
|
[8] |
陈前斌, 谭颀, 贺兰钦, 等. 云雾混合网络下基于多智能体架构的资源分配及卸载决策研究[J]. 电子与信息学报, 2021, 43(9): 2654–2662. doi: 10.11999/JEIT200256
CHEN Qianbin, TAN Qi, HE Lanqin, et al. Research on resource allocation and offloading decision based on multi-agent architecture in cloud-fog hybrid network[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2654–2662. doi: 10.11999/JEIT200256
|
[9] |
NAEEM F, SRIVASTAVA G, and TARIP M. A software defined network based fuzzy normalized neural adaptive multipath congestion control for the internet of things[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2155–2164. doi: 10.1109/TNSE.2020.2991106
|
[10] |
徐琳, 赵知劲. 基于CBR与合作Q学习的分布式CRN资源分配算法[J]. 电信科学, 2019, 35(2): 35–42.
XU Lin and ZHAO Zhijin. A distributed CRN resource allocation algorithm based on CBR and cooperative Q-learning[J]. Telecommunications Science, 2019, 35(2): 35–42.
|
[11] |
YANG Ning, ZHANG Haijun, and BERRY R. Partially observable multi-agent deep reinforcement learning for cognitive resource management[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9322150.
|
[12] |
MAJUMDAR A, BENAVIDEZ P, and JAMSHIDI M. Multi-agent exploration for faster and reliable deep Q-learning convergence in reinforcement learning[C]. 2018 World Automation Congress, Stevenson, USA, 2018: 1–6. doi: 10.23919/WAC.2018.8430409.
|
[13] |
KONG Weiren, ZHOU Deyun, and YANG Zhen. Air combat strategies generation of CGF based on MADDPG and reward shaping[C]. 2020 International Conference on Computer Vision, Image and Deep Learning, Chongqing, China, 2020: 651–655. doi: 10.1109/CVIDL51233.2020.000-7.
|
[14] |
李红光, 郭英, 张东伟, 等. 基于欠定盲源分离的同步跳频信号网台分选[J]. 电子与信息学报, 2021, 43(2): 319–328. doi: 10.11999/JEIT190920
LI Hongguang, GUO Ying, ZHANG Dongwei, et al. Synchronous frequency hopping signal network station sorting based on underdetermined blind source separation[J]. Journal of Electronics &Information Technology, 2021, 43(2): 319–328. doi: 10.11999/JEIT190920
|
[15] |
MAN Jiaxi, LI Wei, WANG Hong, et al. On the technology of frequency hopping communication network-station selection[C]. 2021 International Conference on Electronics, Circuits and Information Engineering, Zhengzhou, China, 2021: 35–41. doi: 10.1109/ECIE52353.2021.00015.
|
[16] |
JIANG Fu, ZHENG Chuyu, GAO Dianzhu, et al. A novel multi-agent cooperative reinforcement learning method for home energy management under a peak power-limiting[C]. 2020 IEEE International Conference on Systems, Man, and Cybernetics, Toronto, Canada, 2020: 350–355. doi: 10.1109/SMC42975.2020.9282976.
|
[17] |
严季, 梁涛, 祈竹. 变跳速、变间隔跳频通信技术研究[J]. 无线通信技术, 2012, 21(4): 25–29. doi: 10.3969/j.issn.1003-8329.2012.04.006
YAN Ji, LIANG Tao, and QI Zhu. Research on the frequenct hopping communication technology of variable hopping rate and variable interval[J]. Wireless Communication Technology, 2012, 21(4): 25–29. doi: 10.3969/j.issn.1003-8329.2012.04.006
|
[18] |
LI Menglin, CHEN Shaofei, and CHEN Jing. Adaptive learning: A new decentralized reinforcement learning approach for cooperative multiagent systems[J]. IEEE Access, 2020, 8: 99404–99421. doi: 10.1109/ACCESS.2020.2997899
|
[19] |
叶梓峰, 王永华, 万频, 等. 基于优先记忆库结合竞争深度Q网络的动态功率控制[J]. 电讯技术, 2019, 59(10): 1132–1139. doi: 10.3969/j.issn.1001-893x.2019.10.004
YE Zifeng, WANG Yonghua, WAN Pin, et al. A dynamic power control strategy based on dueling deep Q network with prioritized experience replay[J]. Telecommunication Engineering, 2019, 59(10): 1132–1139. doi: 10.3969/j.issn.1001-893x.2019.10.004
|
[20] |
HUANG Chong, ZHONG Jie, GONG Yu, et al. Novel deep reinforcement learning-based delay-constrained buffer-aided relay selection in cognitive cooperative networks[J]. Electronics Letters, 2020, 56(21): 1148–1150. doi: 10.1049/el.2020.1495
|
[21] |
王雪, 金涛, 钱志鸿, 等. D2D中继辅助通信的能效优化算法研究[J]. 通信学报, 2020, 41(3): 71–79. doi: 10.11959/j.issn.1000-436x.2020048
WANG Xue, JIN Tao, QIAN Zhihong, et al. Research on maximizing energy efficiency for relay-aided D2D communication[J]. Journal on Communications, 2020, 41(3): 71–79. doi: 10.11959/j.issn.1000-436x.2020048
|
[22] |
LIU Xin, XU Yuhua, JIA Luliang, et al. Anti-jamming communications using spectrum waterfall: A deep reinforcement learning approach[J]. IEEE Communications Letters, 2018, 22(5): 998–1001. doi: 10.1109/LCOMM.2018.2815018
|