Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
GAO Yuan, TAN Rongjun, DENG Zhixiang. Secrecy Performance Optimization of Unmanned Aerial Vehicle -aided Physical Layer Security[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2730-2738. doi: 10.11999/JEIT210600
Citation: GAO Yuan, TAN Rongjun, DENG Zhixiang. Secrecy Performance Optimization of Unmanned Aerial Vehicle -aided Physical Layer Security[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2730-2738. doi: 10.11999/JEIT210600

Secrecy Performance Optimization of Unmanned Aerial Vehicle -aided Physical Layer Security

doi: 10.11999/JEIT210600
Funds:  The National Key Research and Development Project (2018YFC0407101), Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Mid-aged Teachers and Presidents (2019)
  • Received Date: 2021-06-18
  • Accepted Date: 2021-11-18
  • Rev Recd Date: 2021-11-14
  • Available Online: 2021-11-25
  • Publish Date: 2022-08-17
  • Physical layer security is effective to solve the problem of communication security of Internet of Things (IoT). As a full duplex eavesdropper with active attack and passive eavesdropping exists in the IoT, Unmanned Aerial Vehicle (UAV) transmits artificial noise to the eavesdropper for improving secrecy performance in this paper. Based on estimating eavesdropper position, a trajectory optimization algorithm based on Q-learning is proposed to track the eavesdropper mobility and obtain the optimal secrecy performance. The results show that the proposed algorithm converges quickly. UAV can track the eavesdropper mobility to determine the best position of jamming the eavesdropping channel, which guarantees maximum achievable secrecy rate.
  • loading
  • [1]
    BHAYO J, HAMEED S, and SHAH S A. An efficient counter-based DDoS attack detection framework leveraging software defined IoT (SD-IoT)[J]. IEEE Access, 2020, 8: 221612–221631. doi: 10.1109/ACCESS.2020.3043082
    [2]
    WANG Ning, WANG Pu, ALIPOUR-FANID A, et al. Physical-Layer security of 5G wireless networks for IoT: Challenges and opportunities[J]. IEEE Internet of Things Journal, 2019, 6(5): 8169–8181. doi: 10.1109/JIOT.2019.2927379
    [3]
    张波, 黄开枝, 林胜斌, 等. MIMO异构网络中一种基于人工噪声的抗主动窃听者的鲁棒安全传输方案[J]. 电子与信息学报, 2020, 42(9): 2186–2193. doi: 10.11999/5EIT190649

    ZHANG Bo, HUANG Kaizhi, LIN Shengbin, et al. A robust secure transmission scheme based on artificial noise for resisting active eavesdropper in MIMO heterogeneous networks[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2186–2193. doi: 10.11999/5EIT190649
    [4]
    LIU Chenxi, LEE J, and QUEK T Q S. Safeguarding UAV communications against full-duplex active eavesdropper[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 2919–2931. doi: 10.1109/TWC.2019.2906177
    [5]
    HUO Yan, TIAN Yuqi, HU Chunqiang, et al. A location prediction-based helper selection scheme for suspicious eavesdroppers[J]. Wireless Communication and Mobile Computing, 2017, 2017: 1832051.
    [6]
    LIU Chenxi, YANG Nan, MALANEY R, et al. Artificial-Noise-Aided transmission in multi-antenna relay wiretap channels with spatially random eavesdroppers[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7444–7456. doi: 10.1109/TWC.2016.2602337
    [7]
    CAO Kunrui, WANG Buhong, DING Haiyang, et al. Improving physical layer security of uplink NOMA via energy harvesting jammers[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 786–799. doi: 10.1109/TIFS.2020.3023277
    [8]
    WANG Huiming, ZHANG Xu, and JIANG Jiacheng. UAV-Involved wireless physical-layer secure communications: overview and research directions[J]. IEEE Wireless Communications, 2019, 26(5): 32–39. doi: 10.1109/MWC.001.1900045
    [9]
    ZHOU Xiaobo, WU Qingqing, YAN Shihao, et al. UAV-Enabled secure communications: Joint trajectory and transmit power optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4069–4073. doi: 10.1109/TVT.2019.2900157
    [10]
    LI An, WU Qingqing, and ZHANG Rui. UAV-Enabled cooperative jamming for improving secrecy of ground wiretap channel[J]. IEEE Wireless Communications Letters, 2019, 8(1): 181–184. doi: 10.1109/LWC.2018.2865774
    [11]
    CUI Jingjing, LIU Yuanwei, and NALLANATHAN A. Multi-Agent reinforcement learning-based resource allocation for UAV networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 729–743. doi: 10.1109/TWC.2019.2935201
    [12]
    DING Ruijin, GAO Feifei, and SHEN X S. 3D UAV trajectory design and frequency band allocation for energy-efficient and fair communication: A deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 7796–7809. doi: 10.1109/TWC.2020.3016024
    [13]
    ZHANG Yu, MOU Zhiyu, GAO Feifei, et al. UAV-Enabled secure communications by multi-agent deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11599–11611. doi: 10.1109/TVT.2020.3014788
    [14]
    CHEN Mingzhe, MOZAFFARI M, SAAD W, et al. Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(5): 1046–1061. doi: 10.1109/JSAC.2017.2680898
    [15]
    TANG Jinchuan, CHEN Gaojie, and COON J P. Secrecy performance analysis of wireless communications in the presence of UAV jammer and randomly located UAV eavesdroppers[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(11): 3026–3041. doi: 10.1109/TIFS.2019.2912074
    [16]
    LIU Xiao, LIU Yuanwei, and CHEN Yue. Reinforcement learning in multiple-UAV networks: deployment and movement design[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 8036–8049. doi: 10.1109/TVT.2019.2922849
    [17]
    WANG Qian, CHEN Zhi, LI Hang, et al. Joint power and trajectory design for physical-layer secrecy in the UAV-aided mobile relaying system[J]. IEEE Access, 2018, 6: 62849–62855. doi: 10.1109/ACCESS.2018.2877210
    [18]
    COLUCCIA A and RICCIATO F. RSS-Based localization via Bayesian ranging and iterative least squares positioning[J]. IEEE Communications Letters, 2014, 18(5): 873–876. doi: 10.1109/LCOMM.2014.040214.132781
    [19]
    LIU Xiao, LIU Yuanwei, CHEN Yue, et al. Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7957–7969. doi: 10.1109/TVT.2019.2920284
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1110) PDF downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return