Citation: | HUANG Xinlin, ZHENG Renhua. 802.11ax Uplink Scheduling Algorithm Based on Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1800-1808. doi: 10.11999/JEIT210590 |
[1] |
LEE J. OFDMA-based hybrid channel access for IEEE 802.11ax WLAN[C]. 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 2018: 188–193.
|
[2] |
BHATTARAI S, NAIK G, and PARK J M J. Uplink resource allocation in IEEE 802.11ax[C]. ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019: 1–6.
|
[3] |
PIRO G, GRIECO L A, BOGGIA G, et al. Two-level downlink scheduling for real-time multimedia services in LTE networks[J]. IEEE Transactions on Multimedia, 2011, 13(5): 1052–1065. doi: 10.1109/TMM.2011.2152381
|
[4] |
SAFA H and TOHME K. LTE uplink scheduling algorithms: Performance and challenges[C]. 2012 19th International Conference on Telecommunications (ICT), Jounieh, Lebanon, 2012: 1–6.
|
[5] |
KARTHIK R M and PALANISWAMY S. Resource unit (RU) based OFDMA scheduling in IEEE 802.11ax system[C]. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 2018: 1297–1302.
|
[6] |
BANKOV D, DIDENKO A, KHOROV E, et al. OFDMA uplink scheduling in IEEE 802.11ax Networks[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–6.
|
[7] |
WANG Kaidong and PSOUNIS K. Scheduling and Resource Allocation in 802.11ax[C]. IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, USA, 2018: 279–287.
|
[8] |
唐伦, 贺小雨, 王晓, 等. 基于迁移演员-评论家学习的服务功能链部署算法[J]. 电子与信息学报, 2020, 42(11): 2671–2679. doi: 10.11999/JEIT190542
TANG Lun, HE Xiaoyu, WANG Xiao, et al. Deployment algorithm of service function chain based on transfer actor-critic learning[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2671–2679. doi: 10.11999/JEIT190542
|
[9] |
AFAQUI M S, GARCIA-VILLEGAS E, and LOPEZ-AGUILERA E. IEEE 802.11ax: Challenges and requirements for future high efficiency WiFi[J]. IEEE Wireless Communications, 2017, 24(3): 130–137. doi: 10.1109/MWC.2016.1600089WC
|
[10] |
MACHROUH Z and NAJID A. High efficiency WLANs IEEE 802.11ax performance evaluation[C]. 2018 International Conference on Control, Automation and Diagnosis (ICCAD), Marrakech, Morocco, 2018: 1–5.
|
[11] |
ZHOU Hu, LI Bo, YAN Zhongjiang, et al. An OFDMA based multiple access protocol with QoS guarantee for next generation WLAN[C]. 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 2015: 1–6.
|
[12] |
FILOSO D G, KUBO R, HARA K, et al. Proportional-based resource allocation control with QoS adaptation for IEEE 802.11ax[C]. ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
|
[13] |
BAI Jiyang, FANG He, SUH J, et al. An adaptive grouping scheme in ultra-dense IEEE 802.11ax network using buffer state report based two-stage mechanism[J]. China Communications, 2019, 16(9): 31–44. doi: 10.23919/JCC.2019.09.003
|
[14] |
DUAN Ren, CHEN Xiaojiang, and XING Tianzhang. A QoS architecture for IOT[C]. 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, China, 2011: 717–720.
|
[15] |
VINYALS O, FORTUNATO M, and JAITLY N. Pointer networks[J]. arXiv: 1506.03134, 2015.
|
[16] |
BELLO I, PHAM H, LE Q V, et al. Neural combinatorial optimization with reinforcement learning[J]. arXiv: 1611.09940, 2017.
|
[17] |
李晨溪, 曹雷, 陈希亮, 等. 基于云推理模型的深度强化学习探索策略研究[J]. 电子与信息学报, 2018, 40(1): 244–248. doi: 10.11999/JEIT170347
LI Chenxi, CAO Lei, CHEN Xiliang, et al. Cloud reasoning model-based exploration for deep reinforcement learning[J]. Journal of Electronics &Information Technology, 2018, 40(1): 244–248. doi: 10.11999/JEIT170347
|