Citation: | Ran YANG, Wenchao GAO. Local Logic Camouflaging Based IC Circuit Protection Method[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2466-2473. doi: 10.11999/JEIT210577 |
[1] |
ZHANG Jiliang. A practical logic obfuscation technique for hardware security[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(3): 1193–1197. doi: 10.1109/TVLSI.2015.2437996
|
[2] |
张跃军, 王佳伟, 潘钊, 等. 基于正交混淆的多硬件IP核安全防护设计[J]. 电子与信息学报, 2019, 41(8): 1847–1854. doi: 10.11999/JEIT180898
ZHANG Yuejun, WANG Jiawei, PAN Zhao, et al. Hardware security for multi IPs protection based on orthogonal obfuscation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1847–1854. doi: 10.11999/JEIT180898
|
[3] |
张跃军, 潘钊, 汪鹏君, 等. 基于状态映射的AES算法硬件混淆设计[J]. 电子与信息学报, 2018, 40(3): 750–757. doi: 10.11999/JEIT170556
ZHANG Yuejun, PAN Zhao, WANG Pengjun, et al. Design of hardware obfuscation AES based on state deflection strategy[J]. Journal of Electronics &Information Technology, 2018, 40(3): 750–757. doi: 10.11999/JEIT170556
|
[4] |
WANG Xueyan, ZHOU Qiang, CAI Yici, et al. Spear and shield: Evolution of integrated circuit camouflaging[J]. Journal of Computer Science and Technology, 2018, 33(1): 42–57. doi: 10.1007/s11390-018-1807-6
|
[5] |
ROSTAMI M, KOUSHANFAR F, RAJENDRAN J, et al. Hardware security: Threat models and metrics[C]. 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, USA, 2013: 819–823.
|
[6] |
RAJENDRAN J, PINO Y, SINANOGLU O, et al. Security analysis of logic obfuscation[C]. The 49th Annual Design Automation Conference, San Francisco, USA, 2012: 83–89.
|
[7] |
YASIN M, SENGUPTA A, NABEEL M T, et al. Provably-secure logic locking: From theory to practice[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1601–1618.
|
[8] |
WANG Xueyan, ZHOU Qiang, CAI Yici, et al. An empirical study on gate camouflaging methods against circuit partition attack[C]. The on Great Lakes Symposium on VLSI, Banff, Canada, 2017: 345–350.
|
[9] |
JIANG Shan, XU Ning, WANG Xueyan, et al. An efficient technique to reverse engineer minterm protection based camouflaged circuit[J]. Journal of Computer Science and Technology, 2018, 33(5): 998–1006. doi: 10.1007/s11390-018-1870-z
|
[10] |
YU Cunxi, ZHANG Xiangyu, LIU Duo, et al. Incremental SAT-based reverse engineering of camouflaged logic circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36(10): 1647–1659. doi: 10.1109/TCAD.2017.2652220
|
[11] |
SHAMSI K, LI Meng, MEADE T, et al. Circuit obfuscation and oracle-guided attacks: Who can prevail?[C]. Proceedings of the on Great Lakes Symposium on VLSI 2017, Banff, Canada, 2017: 357–362.
|
[12] |
YASIN M, SINANOGLU O, and RAJENDRAN J. Testing the trustworthiness of IC testing: An oracle-less attack on IC camouflaging[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2668–2682. doi: 10.1109/TIFS.2017.2710954
|
[13] |
LI Meng, SHAMSI K, MEADE T, et al. Provably secure camouflaging strategy for IC protection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(8): 1399–1412. doi: 10.1109/TCAD.2017.2750088
|
[14] |
YASIN M, MAZUMDAR B, SINANOGLU O, et al. CamoPerturb: Secure IC camouflaging for minterm protection[C]. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, USA, 2016: 1–8.
|
[15] |
RAJENDRAN J, SAM M, SINANOGLU O, et al. Security analysis of integrated circuit camouflaging[C]. Proceedings of the 2013 ACM SIGSAC Conference on COMPUTER & Communications Security, Berlin, Germany, 2013: 709–720.
|
[16] |
高文超, 罗世玲, 周强. 指定逻辑的电路最小项扰动算法[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 1009–1016. doi: 10.3724/SP.J.1089.2020.17961
GAO Wenchao, LUO Shiling, and ZHOU Qiang. A stable perturbation circuit minterm generation algorithm with specific logic[J]. Journal of Computer-Aided Design &Computer Graphics, 2020, 32(6): 1009–1016. doi: 10.3724/SP.J.1089.2020.17961
|
[17] |
CONG J and DING Yuzheng. On area/depth trade-off in LUT-based FPGA technology mapping[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1994, 2(2): 137–148. doi: 10.1109/92.285741
|
[18] |
BEAMER S and DONOFRIO D. Efficiently exploiting low activity factors to accelerate RTL simulation[C]. 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, USA, 2020: 1–6.
|
[19] |
WANG Xueyan, ZHOU Qiang, CAI Yici, et al. Toward a formal and quantitative evaluation framework for circuit obfuscation methods[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(10): 1844–1857. doi: 10.1109/TCAD.2018.2864220
|
[20] |
BRGLEZ F, BRYAN D, and KOZMINSKI K. Combinational profiles of sequential benchmark circuits[C]. IEEE International Symposium on Circuits and Systems, Portland, USA, 1989: 1929–1934.
|
[21] |
Sun Microsystems. OpenSPARCTM T1 microarchitecture specification[EB/OL]. http://www.oracle.com/technetwork/systems/opensparc/t1-01-opensparct1-micro-arch-1538959.html, 2008.
|
[22] |
BRAYTON R and MISHCHENKO A. ABC: An academic industrial-strength verification tool[C]. Proceedings of the 22nd International Conference, Edinburgh, UK, 2010: 24–40.
|
[23] |
LEE H K and HA D S. Atalanta: An efficient ATPG for combinational circuits[R]. Technical Report, 93–12, 1993.
|
[24] |
LIU Duo, YU Cunxi, ZHANG Xiangyu, et al. Oracle-guided incremental SAT solving to reverse engineer camouflaged logic circuits[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2016: 433–438.
|