Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
Ren Hongxia, Hao Yue. Study on the degradation induced by acceptor interface state for deep-sub-micron grooved-bate PMOSFET\s[J]. Journal of Electronics & Information Technology, 2002, 24(1): 108-114.
Citation: LI Sai, DANG Xiaoyu, YU Xiangbin, HAO Chongzheng, LI Jie, ZHANG Jun. Throughput Analysis of Non-Linear Waveform Non-Orthogonal Multiple Access System with Imperfect Channel State Information[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2749-2756. doi: 10.11999/JEIT210571

Throughput Analysis of Non-Linear Waveform Non-Orthogonal Multiple Access System with Imperfect Channel State Information

doi: 10.11999/JEIT210571
Funds:  The National Natural Science Foundation of China (62031017, 61971221), The Fundamental Research Funds for the Central Universities of China (NP2020104)
  • Received Date: 2021-06-15
  • Accepted Date: 2022-03-07
  • Rev Recd Date: 2022-01-16
  • Available Online: 2022-03-18
  • Publish Date: 2022-08-17
  • Focusing on problems of Non-Orthogonal Multiple Access (NOMA) that are limited to linear modulation, and considering the imperfect Channel State Information (CSI) in the actual system, this paper proposes a nonlinear waveform NOMA system under imperfect CSI based on Minimum Shift Keying type (MSK-type) modulations. First, two-user uplink asynchronous and synchronous system models are established using oversampling and matched filtering techniques. Furthermore, based on the matrix decomposition theory and Successive Interference Cancellation (SIC) mechanism, the transmit power and normalized delay when the system throughput reaches the maximum under perfect or imperfect CSI are derived. Finally, the numerical simulation results show the relationship between system throughput and system parameters such as frame length, response length, waveform, and frequency pulse under perfect and imperfect CSI.
  • [1]
    WANG Qi, ZHANG Rong, YANG Lieliang, et al. Non-orthogonal multiple access: A unified perspective[J]. IEEE Wireless Communications, 2018, 25(2): 10–16. doi: 10.1109/MWC.2018.1700070
    [2]
    DAI Linglong, WANG Bichao, DING Zhiguo, et al. A survey of non-orthogonal multiple access for 5G[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2294–2323. doi: 10.1109/COMST.2018.2835558
    [3]
    SAITO Y, BENJEBBOUR A, KISHIYAMA Y, et al. System-level performance evaluation of downlink non-orthogonal multiple access (NOMA)[C]. The IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 2013: 611–615.
    [4]
    DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
    [5]
    王夕予, 许晓明, 陈亚军. 非理想连续干扰消除下非正交多址接入上行传输系统性能分析[J]. 电子与信息学报, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165

    WANG Xiyu, XU Xiaoming, and CHEN Yajun. Performances analysis in uplink non-orthogonal multiple access system with imperfect successive interference cancellation[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2795–2801. doi: 10.11999/JEIT181165
    [6]
    ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. On optimal power allocation for downlink non-orthogonal multiple access systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2744–2757. doi: 10.1109/JSAC.2017.2725618
    [7]
    YANG Zheng, DING Zhiguo, FAN Pingzhi, et al. On the performance of non-orthogonal multiple access systems with partial channel information[J]. IEEE Transactions on Communications, 2016, 64(2): 654–667. doi: 10.1109/TCOMM.2015.2511078
    [8]
    于宝泉, 蔡跃明, 胡健伟. 认知无线电非正交多址接入随机网络物理层安全性能分析[J]. 电子与信息学报, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049

    YU Baoquan, CAI Yueming, and HU Jianwei. Performance analysis of physical layer security for cognitive radio non-orthogonal multiple access random network[J]. Journal of Electronics &Information Technology, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049
    [9]
    GANJI M and JAFARKHANI H. Interference mitigation using asynchronous transmission and sampling diversity[C]. Proceedings of 2016 IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6.
    [10]
    CUI Jianxiong, DONG Guangliang, ZHANG Shengli, et al. Asynchronous NOMA for downlink transmissions[J]. IEEE Communications Letters, 2017, 21(2): 402–405. doi: 10.1109/LCOMM.2016.2619339
    [11]
    ZOU Xun, HE Biao, and JAFARKHANI H. An analysis of two-user uplink asynchronous non-orthogonal multiple access systems[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1404–1418. doi: 10.1109/TWC.2019.2892486
    [12]
    DANG Xiaoyu, LIU Zhaotong, LI Baolong, et al. Noncoherent multiple-symbol detector of binary CPFSK in physical-layer network coding[J]. IEEE Communications Letters, 2016, 20(1): 81–84. doi: 10.1109/LCOMM.2015.2499249
    [13]
    EMMANUELE A, ZANIER F, BOCCOLINI G, et al. Spread-spectrum continuous-phase-modulated signals for satellite navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3234–3249. doi: 10.1109/TAES.2012.6324699
    [14]
    RICE M and GAGAKUMA E. Approximate MLSE equalization of SOQPSK-TG in aeronautical telemetry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 769–784. doi: 10.1109/TAES.2018.2864807
    [15]
    李赛, 党小宇, 郝崇正, 等. 改进的航空遥测信道探测[J]. 航空学报, 2022, 43(1): 324881. doi: 10.7527/S1000-6893.2020.24881

    LI Sai, DANG Xiaoyu, HAO Chongzheng, et al. Improved aeronautical telemetry channel sounding[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(1): 324881. doi: 10.7527/S1000-6893.2020.24881
    [16]
    PROAKIS J G, SALEHI M, 张力军, 张宗橙, 宋荣方, 等译. 数字通信[M]. 5版. 北京: 电子工业出版社, 2011: 81–91.

    PROAKIS J G, SALEHI M, ZHANG Lijun, ZHANG Zongcheng, SONG Rongfang, et al. translation. Digital Communications[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2011: 81–91.
    [17]
    XIAN Liang, PUNNOOSE R, and LIU Huaping. Simplified receiver design for STBC binary continuous phase modulation[J]. IEEE Transactions on Wireless Communications, 2008, 7(2): 452–457. doi: 10.1109/TWC.2008.060628
    [18]
    ZOU Xun, GANJI M, and JAFARKHANI H. Downlink asynchronous non-orthogonal multiple access systems with imperfect channel information[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6.
    [19]
    FANG Fang, ZHANG Haijun, CHENG Julian, et al. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2874–2885. doi: 10.1109/JSAC.2017.2777672
    [20]
    ETSI. ETSI TS 136 213 V10.1. 0 LET; evolved universal terrestrial radio access (E-UTRA); Physical layer procedures[S]. ETSI, 2011.
    [21]
    CLERCKX B and OESTGES C. MIMO Wireless Networks[M]. 2nd ed. Amsterdam: Elsevier, 2013: 106–122.
    [22]
    LIU Chang and BEAULIEU N C. Exact BER performance for symbol-asynchronous two-user non-orthogonal multiple access[J]. IEEE Communications Letters, 2021, 25(3): 764–768. doi: 10.1109/LCOMM.2020.3038951
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.4 %FULLTEXT: 22.4 %META: 68.6 %META: 68.6 %PDF: 9.0 %PDF: 9.0 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 0.3 %其他: 0.3 %China: 0.3 %China: 0.3 %Israel: 0.8 %Israel: 0.8 %Japan: 0.1 %Japan: 0.1 %Luxembourg: 0.2 %Luxembourg: 0.2 %Rochester: 0.3 %Rochester: 0.3 %Tiruchi: 0.3 %Tiruchi: 0.3 %Tuen Mun San Hui: 0.1 %Tuen Mun San Hui: 0.1 %United States: 0.3 %United States: 0.3 %[]: 5.1 %[]: 5.1 %上海: 0.9 %上海: 0.9 %临汾: 0.1 %临汾: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 5.5 %北京: 5.5 %十堰: 0.2 %十堰: 0.2 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 8.0 %南京: 8.0 %南通: 0.2 %南通: 0.2 %卡纳塔克: 0.3 %卡纳塔克: 0.3 %厦门: 0.1 %厦门: 0.1 %合肥: 0.5 %合肥: 0.5 %周口: 0.1 %周口: 0.1 %咸阳: 0.3 %咸阳: 0.3 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大庆: 0.2 %大庆: 0.2 %天津: 0.1 %天津: 0.1 %安康: 0.1 %安康: 0.1 %安阳: 0.2 %安阳: 0.2 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.6 %常州: 0.6 %广州: 0.9 %广州: 0.9 %张家口: 0.1 %张家口: 0.1 %徐州: 0.2 %徐州: 0.2 %德州: 0.1 %德州: 0.1 %怀化: 0.2 %怀化: 0.2 %成都: 0.3 %成都: 0.3 %扬州: 0.9 %扬州: 0.9 %新乡: 1.5 %新乡: 1.5 %无锡: 0.8 %无锡: 0.8 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.3 %沈阳: 0.3 %法兰克福: 0.1 %法兰克福: 0.1 %泰安: 0.1 %泰安: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.9 %济南: 0.9 %浦那: 0.3 %浦那: 0.3 %淮南: 0.1 %淮南: 0.1 %温州: 0.6 %温州: 0.6 %滨州: 1.7 %滨州: 1.7 %漯河: 1.7 %漯河: 1.7 %烟台: 0.3 %烟台: 0.3 %焦作: 0.1 %焦作: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.1 %石家庄: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.5 %绍兴: 0.5 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %芒廷维尤: 37.9 %芒廷维尤: 37.9 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.2 %衡水: 0.2 %西宁: 2.9 %西宁: 2.9 %西安: 1.4 %西安: 1.4 %诺伊达: 0.1 %诺伊达: 0.1 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 1.1 %运城: 1.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 5.3 %郑州: 5.3 %郴州: 0.1 %郴州: 0.1 %重庆: 1.0 %重庆: 1.0 %长春: 0.1 %长春: 0.1 %长沙: 0.8 %长沙: 0.8 %长治: 0.3 %长治: 0.3 %青岛: 0.1 %青岛: 0.1 %高雄: 0.2 %高雄: 0.2 %其他其他ChinaIsraelJapanLuxembourgRochesterTiruchiTuen Mun San HuiUnited States[]上海临汾保定兰州北京十堰华盛顿州南京南通卡纳塔克厦门合肥周口咸阳哈尔滨哥伦布嘉兴大庆天津安康安阳宣城岳阳常州广州张家口徐州德州怀化成都扬州新乡无锡杭州格兰特县榆林武汉沈阳法兰克福泰安洛阳济南浦那淮南温州滨州漯河烟台焦作珠海石家庄秦皇岛绍兴罗奥尔凯埃芒廷维尤芜湖芝加哥苏州莫斯科衡水西宁西安诺伊达诺沃克贵阳运城邯郸郑州郴州重庆长春长沙长治青岛高雄Highcharts.com

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (607) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return