Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZHANG Tao, ZHANG Yajuan, SUN Gang, LUO Qijun. Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567
Citation: ZHANG Tao, ZHANG Yajuan, SUN Gang, LUO Qijun. Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567

Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing

doi: 10.11999/JEIT210567
Funds:  The Scientific Research Plan of Tianjin Education Commission (2019KJ117)
  • Received Date: 2021-06-11
  • Rev Recd Date: 2022-04-20
  • Available Online: 2022-04-26
  • Publish Date: 2022-08-17
  • A sparse Bayesian dictionary learning-based parameter estimation method is proposed to overcome the performance degradation in presence of dictionary mismatch in Space-Time Adaptive Processing (STAP). First, multiple measurements are constructed by using direction compensated space samples. Second, the bilinear transformation is utilized to separate the velocity and acceleration of the maneuvering target. Finally, the dynamic dictionaries of velocity and acceleration are established by the Taylor’s series, and then the maneuvering target parameters are estimated by sparse Bayesian dictionary learning. Numerical results show that the proposed method can obtain better accuracy in parameter estimation, and can provide an improved performance to the sparse recovery methods with pre-discretized dictionary in STAP parameter estimation.
  • loading
  • [1]
    WANG Xiaoye, YANG Zhaocheng, HUANG Jianjun, et al. Robust two-stage reduced-dimension sparsity-aware STAP for airborne radar with coprime arrays[J]. IEEE Transactions on Signal Processing, 2019, 68: 81–96. doi: 10.1109/TSP.2019.2957640
    [2]
    位寅生, 周希波, 刘佳俊. 稳健的基于参数化协方差矩阵估计的空时自适应处理方法[J]. 电子学报, 2019, 47(9): 1943–1950. doi: 10.3969/j.issn.0372-2112.2019.09.018

    WEI Yinsheng, ZHOU Xibo, and LIU Jiajun. Robust parametric covariance matrix estimation based STAP method[J]. Acta Electronica Sinica, 2019, 47(9): 1943–1950. doi: 10.3969/j.issn.0372-2112.2019.09.018
    [3]
    刘维建, 谢文冲, 王永良. 部分均匀环境中存在干扰时机载雷达广义似然比检测[J]. 电子与信息学报, 2013, 35(8): 1820–1826. doi: 10.3724/SP.J.1146.2012.01492

    LIU Weijian, XIE Wenchong, and WANG Yongliang. Generalized likelihood ratio test for airborne radar with jamming in partially homogeneous environments[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1820–1826. doi: 10.3724/SP.J.1146.2012.01492
    [4]
    MONTLOUIS W, FAUCONIER R, and NDOYE M. Rapidly moving target parameter estimation using phased array radars[C]. The 43rd International Conference on Telecommunications and Signal Processing, Milan, Italy, 2020: 523–527.
    [5]
    ZHANG Xiaowen, LIAO Guisheng, YANG Zhiwei, et al. Parameter estimation based on Hough transform for airborne radar with conformal array[J]. Digital Signal Processing, 2020, 107: 102869. doi: 10.1016/j.dsp.2020.102869
    [6]
    周宝亮. 分布式相参雷达LFM宽带去斜参数估计方法[J]. 电子与信息学报, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398

    ZHOU Baoliang. Distributed coherent radar LFM wideband stretch parameter estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398
    [7]
    KUMAR K A, ARVIND M, DIVAKAR K, et al. A novel time-frequency approach for acceleration estimation from a single PRI[C]. The Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia, 1999: 531–534.
    [8]
    XIA Xianggen. Discrete chirp-Fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122–3133. doi: 10.1109/78.875469
    [9]
    王鹏, 邱天爽, 李景春, 等. 基于高斯加权分数阶傅里叶变换的LFM信号参数估计[J]. 通信学报, 2016, 37(4): 107–115. doi: 10.11959/j.issn.1000-436x.2016077

    WANG Peng, QIU Tianshuang, LI Jingchun, et al. Parameters estimation of LFM signal based on Gaussian-weighted fractional Fourier transform[J]. Journal on Communications, 2016, 37(4): 107–115. doi: 10.11959/j.issn.1000-436x.2016077
    [10]
    贾舒宜, 王国宏, 张磊. 基于压缩感知的机动目标径向加速度估计[J]. 系统工程与电子技术, 2013, 35(9): 1815–1820. doi: 10.3969/j.issn.1001-506X.2013.09.02

    JIA Shuyi, WANG Guohong, and ZHANG Lei. Radial acceleration estimation of maneuvering target based on compressive sensing[J]. Systems Engineering and Electronics, 2013, 35(9): 1815–1820. doi: 10.3969/j.issn.1001-506X.2013.09.02
    [11]
    贾琼琼, 吴仁彪. 基于压缩感知的空时自适应动目标参数估计[J]. 电子与信息学报, 2013, 35(11): 2714–2720. doi: 10.3724/SP.J.1146.2013.00045

    JIA Qiongqiong and WU Renbiao. Space time adaptive parameter estimation of moving target based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2714–2720. doi: 10.3724/SP.J.1146.2013.00045
    [12]
    李海, 郑景忠, 周盟, 等. 基于压缩感知和三次相位变换的低复杂度空中机动目标参数估计[J]. 电子与信息学报, 2015, 37(11): 2697–2704. doi: 10.11999/JEIT150170

    LI Hai, ZHENG Jingzhong, ZHOU Meng, et al. Parameters estimation of air maneuvering target based on compressive sensing and cubic phase transform[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2697–2704. doi: 10.11999/JEIT150170
    [13]
    CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    [14]
    ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009
    [15]
    CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650
    [16]
    章涛, 钟伦珑, 来燃, 等. 基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法[J]. 航空学报, 2021, 42(6): 324592. doi: 10.7527/S1000-6893.2020.24592

    ZHANG Tao, ZHONG Lunlong, LAI Ran, et al. Sparse Bayesian learning method for eliminating dictionary mismatch in clutter space-time spectrum estimation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324592. doi: 10.7527/S1000-6893.2020.24592
    [17]
    ZHU Hao, LEUS G, and GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002–2016. doi: 10.1109/TSP.2011.2109956
    [18]
    ZHENG Jimeng and KAVEH M. Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 2848–2851.
    [19]
    YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    [20]
    KLEMM R. Cramer-Rao analysis of reduced order STAP processors[C]. The IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 584–589.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (516) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return