Citation: | ZHANG Tao, ZHANG Yajuan, SUN Gang, LUO Qijun. Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567 |
[1] |
WANG Xiaoye, YANG Zhaocheng, HUANG Jianjun, et al. Robust two-stage reduced-dimension sparsity-aware STAP for airborne radar with coprime arrays[J]. IEEE Transactions on Signal Processing, 2019, 68: 81–96. doi: 10.1109/TSP.2019.2957640
|
[2] |
位寅生, 周希波, 刘佳俊. 稳健的基于参数化协方差矩阵估计的空时自适应处理方法[J]. 电子学报, 2019, 47(9): 1943–1950. doi: 10.3969/j.issn.0372-2112.2019.09.018
WEI Yinsheng, ZHOU Xibo, and LIU Jiajun. Robust parametric covariance matrix estimation based STAP method[J]. Acta Electronica Sinica, 2019, 47(9): 1943–1950. doi: 10.3969/j.issn.0372-2112.2019.09.018
|
[3] |
刘维建, 谢文冲, 王永良. 部分均匀环境中存在干扰时机载雷达广义似然比检测[J]. 电子与信息学报, 2013, 35(8): 1820–1826. doi: 10.3724/SP.J.1146.2012.01492
LIU Weijian, XIE Wenchong, and WANG Yongliang. Generalized likelihood ratio test for airborne radar with jamming in partially homogeneous environments[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1820–1826. doi: 10.3724/SP.J.1146.2012.01492
|
[4] |
MONTLOUIS W, FAUCONIER R, and NDOYE M. Rapidly moving target parameter estimation using phased array radars[C]. The 43rd International Conference on Telecommunications and Signal Processing, Milan, Italy, 2020: 523–527.
|
[5] |
ZHANG Xiaowen, LIAO Guisheng, YANG Zhiwei, et al. Parameter estimation based on Hough transform for airborne radar with conformal array[J]. Digital Signal Processing, 2020, 107: 102869. doi: 10.1016/j.dsp.2020.102869
|
[6] |
周宝亮. 分布式相参雷达LFM宽带去斜参数估计方法[J]. 电子与信息学报, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398
ZHOU Baoliang. Distributed coherent radar LFM wideband stretch parameter estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398
|
[7] |
KUMAR K A, ARVIND M, DIVAKAR K, et al. A novel time-frequency approach for acceleration estimation from a single PRI[C]. The Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia, 1999: 531–534.
|
[8] |
XIA Xianggen. Discrete chirp-Fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122–3133. doi: 10.1109/78.875469
|
[9] |
王鹏, 邱天爽, 李景春, 等. 基于高斯加权分数阶傅里叶变换的LFM信号参数估计[J]. 通信学报, 2016, 37(4): 107–115. doi: 10.11959/j.issn.1000-436x.2016077
WANG Peng, QIU Tianshuang, LI Jingchun, et al. Parameters estimation of LFM signal based on Gaussian-weighted fractional Fourier transform[J]. Journal on Communications, 2016, 37(4): 107–115. doi: 10.11959/j.issn.1000-436x.2016077
|
[10] |
贾舒宜, 王国宏, 张磊. 基于压缩感知的机动目标径向加速度估计[J]. 系统工程与电子技术, 2013, 35(9): 1815–1820. doi: 10.3969/j.issn.1001-506X.2013.09.02
JIA Shuyi, WANG Guohong, and ZHANG Lei. Radial acceleration estimation of maneuvering target based on compressive sensing[J]. Systems Engineering and Electronics, 2013, 35(9): 1815–1820. doi: 10.3969/j.issn.1001-506X.2013.09.02
|
[11] |
贾琼琼, 吴仁彪. 基于压缩感知的空时自适应动目标参数估计[J]. 电子与信息学报, 2013, 35(11): 2714–2720. doi: 10.3724/SP.J.1146.2013.00045
JIA Qiongqiong and WU Renbiao. Space time adaptive parameter estimation of moving target based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2714–2720. doi: 10.3724/SP.J.1146.2013.00045
|
[12] |
李海, 郑景忠, 周盟, 等. 基于压缩感知和三次相位变换的低复杂度空中机动目标参数估计[J]. 电子与信息学报, 2015, 37(11): 2697–2704. doi: 10.11999/JEIT150170
LI Hai, ZHENG Jingzhong, ZHOU Meng, et al. Parameters estimation of air maneuvering target based on compressive sensing and cubic phase transform[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2697–2704. doi: 10.11999/JEIT150170
|
[13] |
CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
|
[14] |
ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009
|
[15] |
CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650
|
[16] |
章涛, 钟伦珑, 来燃, 等. 基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法[J]. 航空学报, 2021, 42(6): 324592. doi: 10.7527/S1000-6893.2020.24592
ZHANG Tao, ZHONG Lunlong, LAI Ran, et al. Sparse Bayesian learning method for eliminating dictionary mismatch in clutter space-time spectrum estimation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324592. doi: 10.7527/S1000-6893.2020.24592
|
[17] |
ZHU Hao, LEUS G, and GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002–2016. doi: 10.1109/TSP.2011.2109956
|
[18] |
ZHENG Jimeng and KAVEH M. Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 2848–2851.
|
[19] |
YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
|
[20] |
KLEMM R. Cramer-Rao analysis of reduced order STAP processors[C]. The IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 584–589.
|