Citation: | DENG Huiping, SHENG Zhichao, XIANG Sen, WU Jing. Depth Estimation Based on Semantic Guidance for Light Field Image[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2940-2948. doi: 10.11999/JEIT210545 |
[1] |
MENG N, LI K, LIU J Z, et al. Light field view synthesis via aperture disparity and warping confidence map[J]. IEEE Transactions on Image Processing, 2021, 30: 3908–3921. doi: 10.1109/TIP.2021.3066293
|
[2] |
ZHANG M, JI W, PIAO Y R, et al. LFNet: Light field fusion network for salient object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 6276–6287. doi: 10.1109/TIP.2020.2990341
|
[3] |
LI X, YANG Y B, ZHAO Q J, et al. Spatial pyramid based graph reasoning for semantic segmentation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8947–8956.
|
[4] |
武迎春, 王玉梅, 王安红, 等. 基于边缘增强引导滤波的光场全聚焦图像融合[J]. 电子与信息学报, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723
WU Yingchun ,WANG Yumei, WANG Anhong. Light field all-in-focus image fusion based on edge enhanced guided filtering[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723
|
[5] |
JEON H G, PARK J, CHOE G, et al. Accurate depth map estimation from a lenslet light field camera[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1547–1555.
|
[6] |
CHEN C, LIN H T, YU Z, et al. Light field stereo matching using bilateral statistics of surface cameras[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1518–1525.
|
[7] |
WANNER S and GOLDLUECKE B. Globally consistent depth labeling of 4D light field[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 41–48.
|
[8] |
ZHANG S, SHENG H, LI C, et al. Robust depth estimation for light field via spinning parallelogram operator[J]. Computer Vision and Image Understanding, 2016, 145: 148–159. doi: 10.1016/j.cviu.2015.12.007
|
[9] |
TAO M W, SRINIVASAN P P, MALIK J, et al. Depth from shading, defocus, and correspondence using light-field angular coherence[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1940–1948.
|
[10] |
WANG T C, EFROS A A, and RAMAMOORTHI R. Occlusion-aware depth estimation using light-field cameras[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3487–3495.
|
[11] |
WILLIEM W and PARK I K. Robust light field depth estimation for noisy scene with occlusion[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4396–4404.
|
[12] |
HEBER S, YU W, and POCK T. Neural EPI-volume networks for shape from light field[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2271–2279.
|
[13] |
LUO Y X, ZHOU W H, FANG J P, et al. EPI-patch based convolutional neural network for depth estimation on 4D light field[C]. 24th International Conference on Neural Information Processing, Guangzhou, China, 2017: 642–652.
|
[14] |
SHIN C, JEON H G, YOON Y, et al. EPINET: A fully-convolutional neural network using epipolar geometry for depth from light field images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Lake City, USA, 2018: 4748–4757.
|
[15] |
TSAI Y J, LIU Y L, OUHYOUNG M, et al. Attention-Based view selection networks for light-field disparity estimation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12095–12103. doi: 10.1609/AAAI.v34i07.6888
|
[16] |
ZHOU W H, ZHOU E C, YAN Y X, et al. Learning depth cues from focal stack for light field depth estimation[C]. 2019 IEEE International Conference on Image Processing, Taipei, China, 2019: 1074–1078.
|
[17] |
SHI J L, JIANG X R, and GUILLEMOT C. A framework for learning depth from a flexible subset of dense and sparse light field views[J]. IEEE Transactions on Image Processing, 2019, 28(12): 5867–5880. doi: 10.1109/TIP.2019.2923323
|
[18] |
GUO C L, JIN J, HOU J H, et al. Accurate light field depth estimation via an occlusion-aware network[C]. 2020 IEEE International Conference on Multimedia and Expo, London, UK, 2020: 1–6.
|
[19] |
HU J, SHEN L, and SUN G. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[20] |
YE J W, WANG X C, JI Y X, et al. Amalgamating filtered knowledge: Learning task-customized student from multi-task teachers[C]. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 4128–4134.
|
[21] |
HONAUER K, JOHANNSEN O, KONDERMANN D, et al. A dataset and evaluation methodology for depth estimation on 4D light fields[C]. 13th Asian Conference on Computer Vision, Taipei, China, 2016: 19–34.
|