Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WANG Ping, LU Yan, WANG Shuai, YAO Wangding. A Reservation and Reuse Combined Q-learning Semi Persistent Scheduling for C-V2X Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2785-2791. doi: 10.11999/JEIT210543
Citation: WANG Ping, LU Yan, WANG Shuai, YAO Wangding. A Reservation and Reuse Combined Q-learning Semi Persistent Scheduling for C-V2X Communication[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2785-2791. doi: 10.11999/JEIT210543

A Reservation and Reuse Combined Q-learning Semi Persistent Scheduling for C-V2X Communication

doi: 10.11999/JEIT210543
  • Received Date: 2021-06-08
  • Rev Recd Date: 2021-08-25
  • Available Online: 2021-09-29
  • Publish Date: 2022-08-17
  • The 3rd Generation Partnership Project (3GPP) mode 4 provides a direct communication mode to support the C-V2X applications. However, the dynamic traffic load and vehicle mobility lead to uncertainty of channel quality with serious packet collision problem. In order to meet the demand of ultra reliability and low latency of V2X communication. A Reservation-Reuse Combined Q-learning Semi Persistent Scheduling (RRC-QSPS) algorithm is proposed for efficient distributed resource allocation in dynamic load environment. Firstly, the theoretical model of the collision probability of Semi Persistent Scheduling (SPS) algorithm is built. Then, the Q-learning model of vehicle agent in dynamic load environment is proposed with the reservation-reuse combined action and Q function. By using $ \varepsilon $-greedy method, the optimal reservation and reuse of wireless resources in dynamic load environment can be solved. The simulation results show that compared with the existing Lookahead-SPS optimization algorithms, the packet reception ratio of RRC-QSPS is improved by 7% and the update packet delay is reduced by 10% in high speed and high load scenarios.
  • loading
  • [1]
    JEON Y and KIM H. An explicit reservation-augmented resource allocation scheme for C-V2X Sidelink mode 4[J]. IEEE Access, 2020, 8: 147241–147255. doi: 10.1109/ACCESS.2020.3015549
    [2]
    BAZZI A, CECCHINI G, ZANELLA A, et al. Study of the impact of PHY and MAC parameters in 3GPP C-V2V mode 4[J]. IEEE Access, 2018, 6: 71685–71698. doi: 10.1109/ACCESS.2018.2883401
    [3]
    NAIK G, CHOUDHURY B, and PARK J M. IEEE 802.11 bd & 5G NR V2X: Evolution of radio access technologies for V2X communications[J]. IEEE Access, 2019, 7: 70169–70184. doi: 10.1109/ACCESS.2019.2919489
    [4]
    WANG Shuai, LIU Yan, ZHU Jie, et al. A novel collision supervision and avoidance algorithm for scalable MAC of vehicular networks[J]. Chinese Journal of Electronics, 2021, 30(1): 164–170. doi: 10.1049/cje.2020.12.001
    [5]
    MOLINA-MASEGOSA R and GOZALVEZ J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications[J]. IEEE Vehicular Technology Magazine, 2017, 12(4): 30–39. doi: 10.1109/MVT.2017.2752798
    [6]
    GONZALEZ-MARTÍN M, SEPULCRE M, MOLINA-MASEGOSA R, et al. Analytical models of the performance of C-V2X mode 4 vehicular communications[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1155–1166. doi: 10.1109/TVT.2018.2888704
    [7]
    JUNG S Y, CHEON H R, and KIM J H. Reducing consecutive collisions in sensing based semi persistent scheduling for cellular-V2X[C]. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–5.
    [8]
    JEON Y, KUK S, and KIM H. Reducing message collisions in sensing-based semi-persistent scheduling (SPS) by using reselection lookaheads in cellular V2X[J]. Sensors, 2018, 18(12): 4388. doi: 10.3390/s18124388
    [9]
    BONJORN N, FOUKALAS F, and POP P. Enhanced 5G V2X services using sidelink device-to-device communications[C]. 2018 17th Annual Mediterranean ad HOC Networking Workshop (Med-Hoc-Net), Capri, Italy, 2018: 1–7.
    [10]
    HONNAIAH P J, MATURO N, and CHATZINOTAS S. Foreseeing semi-persistent scheduling in mode-4 for 5G enhanced V2X communication[C]. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, USA, 2020: 1–2.
    [11]
    余翔, 陈晓东, 王政, 等. 基于LTE-V2X的车联网资源分配算法[J]. 计算机工程, 2021, 47(2): 188–193.

    YU Xiang, CHEN Xiaodong, WANG Zheng, et al. Resource allocation algorithm for internet of vehicles based on LTE-V2X[J]. Computer Engineering, 2021, 47(2): 188–193.
    [12]

    JIN Jiuyi and QIU Gongan. Joint optimization of resource allocation and power control in C-V2X communications[J/OL]. Computer Engineering, 2020: 1–10. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJC20201014004&v=fpDLQvPDFGcn3qeXmuRIceO0Zyyaau3ClfB8VIRe3GnypH%25mmd2FWjA8xWhfkjlUBdOBz, 2020.
    [13]
    CAMPOLO C, MOLINARO A, ROMEO F, et al. 5G NR V2X: On the impact of a flexible numerology on the autonomous sidelink mode[C]. 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 2019: 102–107.
    [14]
    BONJORN N, FOUKALAS F, CAÑELLAS F, et al. Cooperative resource allocation and scheduling for 5G eV2X services[J]. IEEE Access, 2019, 7: 58212–58220. doi: 10.1109/ACCESS.2018.2889190
    [15]
    HAIDER A and HWANG S H. Adaptive transmit power control algorithm for sensing-based semi-persistent scheduling in C-V2X mode 4 communication[J]. Electronics, 2019, 8(8): 846. doi: 10.3390/electronics8080846
    [16]
    YE Hao, LI G Y, and JUANG B H F. Deep reinforcement learning based resource allocation for V2V communications[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3163–3173. doi: 10.1109/TVT.2019.2897134
    [17]
    陈前斌, 管令进, 李子煜, 等. 基于深度强化学习的异构云无线接入网自适应无线资源分配算法[J]. 电子与信息学报, 2020, 42(6): 1468–1477. doi: 10.11999/JEIT190511

    CHEN Qianbin, GUAN Lingjin, LI Ziyu, et al. Deep reinforcement learning-based adaptive wireless resource allocation algorithm for heterogeneous cloud wireless access network[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1468–1477. doi: 10.11999/JEIT190511
    [18]
    SUTTON R S and BARTO A G. Reinforcement learning: An introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054.
    [19]
    CECCHINI G, BAZZI A, MASINI B M, et al. LTEV2Vsim: An LTE-V2V simulator for the investigation of resource allocation for cooperative awareness[C]. 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 2017: 80–85.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1558) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return