| Citation: | YE Xueyi, GUO Wenfeng, ZENG Maosheng, ZHANG Keshen, ZHAO Zhijin. Image Steganography Detection Based on Multilayer Perceptual Convolution and Channel Weighting[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537 | 
 
	                | [1] | LIU Jia, KE Yan, ZHANG Zhuo, et al. Recent advances of image steganography with generative adversarial networks[J]. IEEE Access, 2020, 8: 60575–60597. doi:  10.1109/ACCESS.2020.2983175 | 
| [2] | PEVNY T, BAS P, and FRIDRICH J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on information Forensics and Security, 2010, 5(2): 215–224. doi:  10.1109/TIFS.2010.2045842 | 
| [3] | FRIDRICH J and KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868–882. doi:  10.1109/tifs.2012.2190402 | 
| [4] | 付章杰, 李恩露, 程旭, 等. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548–568. doi:  10.7544/issn1000-1239.2021.20200360 FU Zhangjie, LI Enlu, CHENG Xu, et al. Recent advances in image steganography based on deep learning[J]. Computer Research and Development, 2021, 58(3): 548–568. doi:  10.7544/issn1000-1239.2021.20200360 | 
| [5] | SHARIFZADEH M, ALORAINI M, and SCHONFELD D. Adaptive batch size image merging steganography and quantized Gaussian image steganography[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 867–879. doi:  10.1109/TIFS.2019.2929441 | 
| [6] | LAISHRAM D and TUITHUNG T. A novel minimal distortion-based edge adaptive image steganography scheme using local complexity[J]. Multimedia Tools and Applications, 2021, 80(1): 831–854. doi:  10.1007/S11042-020-09519-9 | 
| [7] | 陈君夫, 付章杰, 张卫明, 等. 基于深度学习的图像隐写分析综述[J]. 软件学报, 2021, 32(2): 551–578. doi:  10.13328/j.cnki.jos.006135 CHEN Junfu, FU Zhangjie, ZHANG Weiming, et al. Review of image steganalysis based on deep learning[J]. Journal of Software, 2021, 32(2): 551–578. doi:  10.13328/j.cnki.jos.006135 | 
| [8] | TAN Shunquan and LI Bin. Stacked convolutional auto-encoders for steganalysis of digital images[C]. Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia, 2014: 1–4. | 
| [9] | QIAN Yinlong, DONG Jing, WANG Wei, et al. Deep learning for steganalysis via convolutional neural networks[J]. SPIE, 2015, 9409. | 
| [10] | XU Guanshuo, WU Hanzhou, and SHI Yunqing. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 708–712. doi:  10.1109/LSP.2016.2548421 | 
| [11] | YE Jian, NI Jiangqun, and YI Yang. Deep learning hierarchical representations for image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11): 2545–2557. doi:  10.1109/TIFS.2017.2710946 | 
| [12] | YEDROUDJ M, COMBY F, and CHAUMONT M. Yedrouj-Net: An efficient CNN for spatial steganalysis[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 2092–2096. | 
| [13] | ZHANG Ru, ZHU Feng, LIU Jianyi, et al. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 1138–1150. doi:  10.1109/TIFS.2019.2936913 | 
| [14] | HOLUB V and FRIDRICH J. Designing steganographic distortion using directional filters[C]. 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje, Spain, 2012: 234–239. | 
| [15] | HOLUB V, FRIDRICH J, and DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 2014: 1. doi:  10.1186/1687-417X-2014-1 | 
| [16] | MEMISEVIC R, ZACH C, HINTON G E, et al. Gated softmax classification[C]. The 23rd International Conference on Neural Information Processing Systems, Red Hook, USA, 2010: 1603–1611. | 
| [17] | LIN Min, CHEN Qiang, and YAN Shuicheng. Network in network[Z]. ArXiv: 1312.4400, 2013. | 
| [18] | HU JIE, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi:  10.1109/TPAMI.2019.2913372 | 
| [19] | BAS P, FILLER T, and TOMÁS PEVNÝ T. “Break Our Steganographic System”: The ins and outs of organizing BOSS[C]. Information Hiding 13th International Conference, Prague, Czech Republic, 2011: 59–70. | 
| [20] | GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249–256. | 
