Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
GAN Chenquan, LIU Anqi, ZHANG Zufan, ZHU Qingyi. Modeling and Analysis of User Awareness and Information Coupling Propagation in D2D Communications[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2767-2776. doi: 10.11999/JEIT210535
Citation: GAN Chenquan, LIU Anqi, ZHANG Zufan, ZHU Qingyi. Modeling and Analysis of User Awareness and Information Coupling Propagation in D2D Communications[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2767-2776. doi: 10.11999/JEIT210535

Modeling and Analysis of User Awareness and Information Coupling Propagation in D2D Communications

doi: 10.11999/JEIT210535
Funds:  The National Natural Science Foundation of China (61702066, 61903056), The Major Project of Science and Technology Research Program of Chongqing Education Commission of China (KJZD-M201900601), Chongqing Research Program of Basic Research and Frontier Technology (cstc2021jcyj-msxmX0761, cstc2019jcyj-msxmX0681), The Project Supported by Chongqing Municipal Key Laboratory of Institutions of Higher Education (cqupt-mct-201901)
  • Received Date: 2021-06-08
  • Accepted Date: 2022-02-23
  • Rev Recd Date: 2022-02-19
  • Available Online: 2022-03-07
  • Publish Date: 2022-08-17
  • The information transmission process in Device to Device (D2D) communications is not only affected by physical communication conditions but also closely related to the dynamic properties of users. To explore the internal relationship between information transmission and user awareness diffusion, they are regarded as two propagation processes, and the interprocess interaction factors are introduced to describe the interaction in this paper. Furthermore, a coupling propagation dynamical model of information and user awareness is established and analyzed comprehensively. Specifically, the existence and uniqueness of the equilibrium and its global stability are proved through theoretical analysis, which reveals the final state of coupling propagation between information and user awareness in D2D communications. The theoretical results are also verified by experimental analysis. Meanwhile, compared with the traditional model and the propagation model without considering the interaction of process, the scale of information propagation can be expanded and the information propagation process can be described more accurately by the proposed model.
  • loading
  • [1]
    CAO Jin, MA Maode, LI Hui, et al. A survey on security aspects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 170–195. doi: 10.1109/COMST.2019.2951818
    [2]
    PEDHADIYA M K, JHA R K, and BHATT H G. Device to device communication: A survey[J]. Journal of Network and Computer Applications, 2019, 129: 71–89. doi: 10.1016/j.jnca.2018.10.012
    [3]
    NITTI M, STELEA G A, POPESCU V, et al. When social networks meet D2D communications: A survey[J]. Sensors, 2019, 19(2): 396. doi: 10.3390/s19020396
    [4]
    王璐, 王熠晨. 具有社交意识的D2D网络安全协作传输策略[C]. 2017-2019年“学术金秋”获奖论文集, 西安, 2020: 110–114.

    WANG Lu and WANG Yichen. D2D network security cooperative transmission strategy with social awareness[C]. 2017-2019 "Academic Autumn" Award Collection, Xi’an, China, 2020: 110–114.
    [5]
    张灿, 史鑫, 王萌. 社交感知的D2D内容安全缓存算法[J]. 计算机科学, 2019, 46(10): 167–172. doi: 10.11896/jsjkx.180901776

    ZHANG Can, SHI Xin, and WANG Meng. Social-aware D2D secure caching algorithm[J]. Computer Science, 2019, 46(10): 167–172. doi: 10.11896/jsjkx.180901776
    [6]
    ZHANG Qi, ZHANG Zufan, ZENG Tian, et al. Modeling and analysis of dynamic social ties in D2D collaborative video transmission[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 1915840. doi: 10.1155/2020/1915840
    [7]
    YI Yinxue, ZHANG Zufan, YANG L T, et al. Reemergence modeling of intelligent information diffusion in heterogeneous social networks: the dynamics perspective[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 828–840. doi: 10.1109/TNSE.2020.2975112
    [8]
    徐少毅, 张鹏. D2D协作通信网络中基于社交信息的中继选择和功率分配[J]. 电子与信息学报, 2017, 39(5): 1142–1149. doi: 10.11999/JEIT160746

    XU Shaoyi and ZHANG Peng. Social network information based relay selection and power allocation in D2D communication systems[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1142–1149. doi: 10.11999/JEIT160746
    [9]
    SCATÀ M, DI STEFANO A, LA CORTE A, et al. A multiplex social contagion dynamics model to shape and discriminate D2D content dissemination[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 581–593. doi: 10.1109/TCCN.2020.3027697
    [10]
    ZHANG Zufan, LIU Anqi, YI Yinxue, et al. Exploring the dynamical behavior of information diffusion in D2D communication environment[J]. Security and Communication Networks, 2020, 2020: 8848576. doi: 10.1155/2020/8848576
    [11]
    SANG Chunyan and LIAO Shigen. Modeling and simulation of information dissemination model considering user’s awareness behavior in mobile social networks[J]. Physica A:Statistical Mechanics and its Applications, 2020, 537: 122639. doi: 10.1016/j.physa.2019.122639
    [12]
    ZHOU Yinzuo, ZHOU Jie, CHEN Guanrong, et al. Effective degree theory for awareness and epidemic spreading on multiplex networks[J]. New Journal of Physics, 2019, 21(3): 035002. doi: 10.1088/1367-2630/ab0458
    [13]
    魏静, 黄阳江豪, 朱恒民. 基于耦合网络的社交网络舆情传播模型研究[J]. 现代情报, 2019, 39(10): 110–118. doi: 10.3969/j.issn.1008-0821.2019.10.013

    WEI Jing, HUANG Yangjianghao, and ZHU Hengmin. Research on public opinion communication model of social network based on coupling network[J]. Journal of Modern Information, 2019, 39(10): 110–118. doi: 10.3969/j.issn.1008-0821.2019.10.013
    [14]
    YI Yinxue, ZHANG Zufan, and GAN Chenquan. The outbreak threshold of information diffusion over social–physical networks[J]. Physica A:Statistical Mechanics and its Applications, 2019, 526: 121128. doi: 10.1016/j.physa.2019.121128
    [15]
    ZHANG Yuexia and PAN Dawei. Layered SIRS model of information spread in complex networks[J]. Applied Mathematics and Computation, 2021, 411: 126524. doi: 10.1016/j.amc.2021.126524
    [16]
    YI Yinxue, ZHANG Zufan, YANG L T, et al. Social interaction and information diffusion in social Internet of Things: Dynamics, cloud-edge, traceability[J]. IEEE Internet of Things Journal, 2021, 8(4): 2177–2199. doi: 10.1109/JIOT.2020.3026995
    [17]
    WANG Zhishuang, GUO Quantong, SUN Shiwen, et al. The impact of awareness diffusion on SIR-like epidemics in multiplex networks[J]. Applied Mathematics and Computation, 2019, 349: 134–147. doi: 10.1016/j.amc.2018.12.045
    [18]
    XIA Chengyi, WANG Zhishuang, ZHENG Chunyuan, et al. A new coupled disease-awareness spreading model with mass media on multiplex networks[J]. Information Sciences, 2019, 471: 185–200. doi: 10.1016/j.ins.2018.08.050
    [19]
    HÉBERT-DUFRESNE L, MISTRY D, and ALTHOUSE B M. Spread of infectious disease and social awareness as parasitic contagions on clustered networks[J]. Physical Review Research, 2020, 2(3): 033306. doi: 10.1103/PhysRevResearch.2.033306
    [20]
    ROBINSON R C. An Introduction to Dynamical Systems: Continuous and Discrete[M]. Upper Saddle River: Pearson Prentice Hall, 2004.
    [21]
    THIEME H R. Asymptotically autonomous differential equations in the plane[J]. Rocky Mountain Journal of Mathematics, 1993, 24(1): 351–380. doi: 10.1216/rmjm/1181072470
    [22]
    GAN Chenquan, LI Xiaoke, WANG Lisha, et al. The impact of user behavior on information diffusion in D2D communications: A discrete dynamical model[J]. Discrete Dynamics in Nature and Society, 2018, 2018: 3745769. doi: 10.1155/2018/3745769
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (466) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return