Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Lei FENG, Kunyi XIE, Liang ZHU, Xuesong QIU, Shaoyong GUO. 5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3418-3426. doi: 10.11999/JEIT210509
Citation: Lei FENG, Kunyi XIE, Liang ZHU, Xuesong QIU, Shaoyong GUO. 5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3418-3426. doi: 10.11999/JEIT210509

5G Ultra-Reliable and Low Latency Communication Resource Scheduling for Power Business Quality Assurance

doi: 10.11999/JEIT210509
Funds:  The National Key R&D Program of China (2020YFB0906003)
  • Received Date: 2021-06-03
  • Rev Recd Date: 2021-10-23
  • Available Online: 2021-11-09
  • Publish Date: 2021-12-21
  • The resource scheduling method of 5G URLLC (Ultra-Reliable and Low Latency Communication) is studied in this paper to assure the Quality of Service (QoS) of various power business, which utilizes the limited spectrum and power in low-band cellular communication system to meet the requirement of power terminal about transmission rate, scheduling delay and fairness in an efficient manner. Firstly, based on the high reliability and low latency characteristics of URLLC, a multi-cell downlink system model is built. Then, a resource allocation problem model for maximizing downlink throughput is proposed and solved step by step. Power allocation algorithm bases on pricing mechanism and non-cooperative game and an Delay-based Proportional Fair (DPF)algorithm is designed to schedule channel resource dynamicly. Simulation results show that the proposed resource scheduling method can reduce the scheduling delay of power terminals under the constraints of transmission reliability and fairness while meeting the different QoS requirements. The proposed method outperforms some known algorithms.
  • loading
  • [1]
    SUN Chengjian, SHE Changyang, and YANG Chenyang. Energy-efficient resource allocation for ultra-reliable and low-latency communications[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254943.
    [2]
    SUN Chengjian, SHE Changyang, YANG Chenyang, et al. Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 402–415. doi: 10.1109/TWC.2018.2880907
    [3]
    HU Yulin, OZMEN M, GURSOY M C, et al. Optimal power allocation for QoS-constrained downlink networks with finite blocklength codes[C]. 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377030.
    [4]
    SHEN Chao, CHANG T H, XU Hanqing, et al. Joint uplink and downlink transmission design for URLLC using finite blocklength codes[C]. The 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 2018: 1–5. doi: 10.1109/ISWCS.2018.8491069.
    [5]
    GE Xiaohu. Ultra-reliable low-latency communications in autonomous vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5005–5016. doi: 10.1109/TVT.2019.2903793
    [6]
    LEINONEN J, HÄMÄLÄINEN J, and JUNTTI M. Performance analysis of downlink OFDMA resource allocation with limited feedback[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2927–2937. doi: 10.1109/TWC.2009.071374
    [7]
    潘甦, 曹跑跑, 刘胜美. 一种多无线电系统中基于公平性和精细化带宽分配的资源分配算法[J]. 电子与信息学报, 2015, 37(2): 399–404. doi: 10.11999/JEIT140339

    PAN Su, CAO Paopao, and LIU Shengmei. A resource allocation algorithm based on proportional fairness and refined bandwidth allocation for multi-radio systems[J]. Journal of Electronics &Information Technology, 2015, 37(2): 399–404. doi: 10.11999/JEIT140339
    [8]
    RHEE J H, HOLTZMAN J M, and KIM D K. Scheduling of real/non-real time services: Adaptive EXP/PF algorithm[C]. The 57th IEEE Semiannual Vehicular Technology Conference, Jeju, Korea (South), 2003: 462–466. doi: 10.1109/VETECS.2003.1207583.
    [9]
    张天魁, 曾志民, 张颖莹. 基于博弈论的OFDMA系统多小区功率协调分配算法[J]. 通信学报, 2008, 29(1): 22–29. doi: 10.3321/j.issn:1000-436X.2008.01.004

    ZHANG Tiankui, ZENG Zhimin, and ZHANG Yingying. Multicell adaptive power allocation scheme based on game theory in OFDMA systems[J]. Journal on Communications, 2008, 29(1): 22–29. doi: 10.3321/j.issn:1000-436X.2008.01.004
    [10]
    仲崇显, 李春国, 杨绿溪. 基于非合作博弈论的多小区OFDMA系统动态资源分配算法研究[J]. 电子与信息学报, 2009, 31(8): 1935–1940. doi: 10.1016/j.apm.2007.10.019

    ZHONG Chongxian, LI Chunguo, and YANG Lüxi. Dynamic resource allocation algorithm for multi-cell OFDMA systems based on noncooperative game theory[J]. Journal of Electronics &Information Technology, 2009, 31(8): 1935–1940. doi: 10.1016/j.apm.2007.10.019
    [11]
    何学文. OFDM系统中资源分配技术研究[D]. [硕士论文], 上海交通大学, 2009.

    HE Xuewen. Research on Resource allocation technology of OFDM system[D]. [Master dissertation], Shanghai Jiao Tong University, 2009.
    [12]
    NASIR A A. Min-max decoding-error probability-based resource allocation for a URLLC System[J]. IEEE Communications Letters, 2020, 24(12): 2864–2867. doi: 10.1109/LCOMM.2020.3015688
    [13]
    谢显中, 黎佳, 黄倩, 等. 机器类通信中基于NOMA短编码块传输的高可靠低迟延无线资源分配优化方案[J]. 电子与信息学报, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128

    XIE Xianzhong, LI Jia, HUANG Qian, et al. Optimal scheme of resource allocation for ultra-reliable and low-latency in machine type communications based on non-orthogonal multiple access with short block transmission[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2549–2556. doi: 10.11999/JEIT190128
    [14]
    GHANEM W R, JAMALI V, SUN Yan, et al. Resource allocation for multi-user downlink MISO OFDMA-URLLC systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7184–7200. doi: 10.1109/TCOMM.2020.3017757
    [15]
    FENG Lei, LI Wenjing, LIN Yingxin, et al. Joint computation offloading and URLLC resource allocation for collaborative MEC assisted cellular-V2X networks[J]. IEEE Access, 2020, 8: 24914–24926. doi: 10.1109/ACCESS.2020.2970750
    [16]
    KHAN J and JACOB L. Availability maximization framework for CoMP enabled URLLC with short packets[J]. IEEE Networking Letters, 2020, 2(1): 1–4. doi: 10.1109/LNET.2020.2974894
    [17]
    LIBRINO F and SANTI P. Resource allocation and sharing in URLLC for IoT applications using Shareability graphs[J]. IEEE Internet of Things Journal, 2020, 7(10): 10511–10526. doi: 10.1109/JIOT.2020.2999645
    [18]
    GHANEM W R, JAMALI V, ZHANG Qiuyu, et al. Joint uplink-downlink resource allocation for OFDMA-URLLC MEC systems[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–7. doi: 10.1109/GLOBECOM42002.2020.9348027.
    [19]
    FENG Lei, ZI Yueqi, LI Wenjing, et al. Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services[J]. IEEE Access, 2020, 8: 34538–34551. doi: 10.1109/ACCESS.2020.2974812
    [20]
    3GPP. TR 38.802 v14.2. 0-2017 Study on new radio access technology Physical layer aspects[S]. 2017.
    [21]
    FAXÉN L. A study on segmentation for ultra-reliable low-latency communications[D]. [Master dissertation], Linköping University, 2017.
    [22]
    ROCHIM A F, MUIS A, and SARI R F. A discrimination index based on Jain's fairness index to differentiate researchers with identical H-index Values[J]. Journal of Data and Information Science, 2020, 5(4): 5–18. doi: 10.2478/jdis-2020-0026
    [23]
    YU Baoquan, WU Dan, CAI Yueming, et al. Resource allocation for massive machine type communications in the finite blocklength regime[J]. China Communications, 2021, 18(3): 240–250. doi: 10.23919/JCC.2021.03.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1014) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return