Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Haoyang LIU, Gang WANG, Wenchao YANG, Jinlong WANG, Yao XU, Donglai ZHAO. Popularity Matching Edge Caching Policy Based on Stochastic Geometry Theory[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3427-3433. doi: 10.11999/JEIT210493
Citation: Haoyang LIU, Gang WANG, Wenchao YANG, Jinlong WANG, Yao XU, Donglai ZHAO. Popularity Matching Edge Caching Policy Based on Stochastic Geometry Theory[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3427-3433. doi: 10.11999/JEIT210493

Popularity Matching Edge Caching Policy Based on Stochastic Geometry Theory

doi: 10.11999/JEIT210493
Funds:  The National Natural Science Foundation of China (62071146, 62071147)
  • Received Date: 2021-06-01
  • Rev Recd Date: 2021-09-10
  • Available Online: 2021-09-25
  • Publish Date: 2021-12-21
  • Edge caching mechanism for heterogeneous network is one of the reliable technologies to solve the excessive link load of the traditional backhaul mechanism, but the existing caching policies often can not match the popularity of the required data. To solve this problem, a Popularity Matching Caching Policy (PMCP) is proposed in this paper, which can match the corresponding file cache probability according to the popularity parameters to maximize communication reliability and reduce backhaul bandwidth pressure. The plane position of the base station is modeled by stochastic geometry theory. The results of the Monte Carlo simulation show that the proposed caching policy can effectively reduce the backhaul bandwidth pressure, and the reliability of the proposed caching policy is better than the comparison policies.
  • loading
  • [1]
    MAO Yuji, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [2]
    BHARATH B N, NAGANANDA K G, and POOR H V. A learning-based approach to caching in heterogenous small cell networks[J]. IEEE Transactions on Communications, 2016, 64(4): 1674–1686. doi: 10.1109/TCOMM.2016.2536728
    [3]
    SONG J, SONG H, and CHOI W. Optimal content placement for wireless femto-caching network[J]. IEEE Transactions on Wireless Communications, 2017, 16(7): 4433–4444. doi: 10.1109/TWC.2017.2698447
    [4]
    SONG J and CHOI W. Minimum cache size and backhaul capacity for cache-enabled small cell networks[J]. IEEE Wireless Communications Letters, 2018, 7(4): 490–493. doi: 10.1109/LWC.2017.2787765
    [5]
    KRISHNENDU S, BHARATH B N, and BHATIA V. Cache enabled cellular network: Algorithm for cache placement and guarantees[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1550–1554. doi: 10.1109/LWC.2019.2926726
    [6]
    WANG Hongman, Li Yingxue, ZHAO Xiaoqi, et al. An algorithm based on markov chain to improve edge cache hit ratio for blockchain-enabled IoT[J]. China Communications, 2020, 17(9): 66–76. doi: 10.23919/JCC.2020.09.006
    [7]
    TAMOOR-UL-HASSAN S, BENNIS M, NARDELLI P H J, et al. Caching in wireless small cell networks: A storage-bandwidth tradeoff[J]. IEEE Communications Letters, 2016, 20(6): 1175–1178. doi: 10.1109/LCOMM.2016.2543698
    [8]
    LIU Dong and YANG Chenyang. Caching policy toward maximal success probability and area spectral efficiency of cache-enabled HetNets[J]. IEEE Transactions on Communications, 2017, 65(6): 2699–2714. doi: 10.1109/TCOMM.2017.2680447
    [9]
    ZHANG Tiankui, FANG Xinyuan, LIU Yuanwei, et al. D2D-enabled mobile user edge caching: A multi-winner auction approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 12314–12328. doi: 10.1109/TVT.2019.2947334
    [10]
    杨静, 李金科. 带有特征感知的D2D内容缓存策略[J]. 电子与信息学报, 2020, 42(9): 2201–2207. doi: 10.11999/JEIT190691

    YANG Jing and LI Jinke. Feature-aware D2D content caching strategy[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2201–2207. doi: 10.11999/JEIT190691
    [11]
    HUA Haojiang and CHU Xiaoli. Content caching policy with edge caching user classification in fog radio access networks[C]. 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China: IEEE, 2021: 1–7. doi: 10.1109/WCNC49053.2021.9417284.
    [12]
    BŁASZCZYSZYN B, KARRAY M K, and KEELER H P. Using Poisson processes to model lattice cellular networks[C]. IEEE INFOCOM, Turin, Italy: IEEE, 2013: 773–781. doi: 10.1109/INFCOM.2013.6566864.
    [13]
    JO H S, SANG Y J, XIA Ping, et al. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis[J]. IEEE Transactions on Wireless Communications, 2012, 11(10): 3484–3495. doi: 10.1109/TWC.2012.081612.111361
    [14]
    ANDREWS J G, BACCELLI F, and GANTI R K. A tractable approach to coverage and rate in cellular networks[J]. IEEE Transactions on Communications, 2011, 59(11): 3122–3134. doi: 10.1109/TCOMM.2011.100411.100541
    [15]
    BRESLAU L, CAO Pei, FAN Li, et al. Web caching and Zipf-like distributions: Evidence and implications[C]. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, New York, USA: IEEE, 1999: 126–134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (740) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return