Citation: | Zhipeng ZHANG, Qian XU, Chengyi XIA. Semi-tensor Product of Matrices-based Approach to the Opacity Analysis of Cyber Physical Systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3434-3441. doi: 10.11999/JEIT210492 |
[1] |
王鹏, 向阳, 宗宇伟, 等. 基于时空π-演算的信息物理融合系统组件可替换性判定[J]. 电子与信息学报, 2012, 34(10): 2494–2500.
WANG Peng, XIANG Yang, ZONG Yuwei, et al. Substitution determination of cyber-physical system components via time-space π-calculus[J]. Journal of Electronics &Information Technology, 2012, 34(10): 2494–2500.
|
[2] |
汤巍, 景博, 黄以锋. 基于关联图模型的信息物理融合系统感知数据可信性分析[J]. 电子与信息学报, 2015, 37(3): 679–685. doi: 10.11999/JEIT140437
TANG Wei, JING Bo, and HUANG Yifeng. Creditability analysis of sensor data in the cyber-physical system based on the relationship diagram model[J]. Journal of Electronics &Information Technology, 2015, 37(3): 679–685. doi: 10.11999/JEIT140437
|
[3] |
LAFORTUNE S, LIN Feng, and HADJICOSTIS C N. On the history of diagnosability and opacity in discrete event systems[J]. Annual Reviews in Control, 2018, 45: 257–266. doi: 10.1016/j.arcontrol.2018.04.002
|
[4] |
JACOB R, LESAGE J J, and FAURE J M. Overview of discrete event systems opacity: Models, validation, and quantification[J]. Annual Reviews in Control, 2016, 41: 135–146. doi: 10.1016/j.arcontrol.2016.04.015
|
[5] |
SABOORI A and HADJICOSTIS C N. Notions of security and opacity in discrete event systems[C]. The 2007 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007: 5056–5061.
|
[6] |
SABOORI A and HADJICOSTIS C N. Verification of K-step opacity and analysis of its complexity[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(3): 549–559. doi: 10.1109/TASE.2011.2106775
|
[7] |
SABOORI A and HADJICOSTIS C N. Verification of infinite-step opacity and complexity considerations[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1265–1269. doi: 10.1109/TAC.2011.2173774
|
[8] |
YIN Xiang and LAFORTUNE S. A new approach for the verification of infinite-step and K-step opacity using two-way observers[J]. Automatica, 2017, 80: 162–171. doi: 10.1016/j.automatica.2017.02.037
|
[9] |
ZHANG Kuize, YIN Xiang, and ZAMANI M. Opacity of nondeterministic transition systems: A (Bi)simulation relation approach[J]. IEEE Transactions on Automatic Control, 2019, 64(12): 5116–5123. doi: 10.1109/TAC.2019.2908726
|
[10] |
MOHAJERAN D and LAFORTUNE S. Transforming opacity verification to nonblocking verification in modular systems[J]. IEEE Transactions on Automatic Control, 2020, 65(4): 1739–1746. doi: 10.1109/TAC.2019.2934708
|
[11] |
CHENG Daizhan and QI Hongsheng. A linear representation of dynamics of Boolean networks[J]. IEEE Transactions on Automatic Control, 2010, 55(10): 2251–2258. doi: 10.1109/TAC.2010.2043294
|
[12] |
CHENG Daizhan, QI Hongsheng, and LI Zhiqiang. Analysis and Control of Boolean Networks[M]. London: Springer, 2011: 18–22.
|
[13] |
CHENG Daizhan and LIU Zequn. Topologies on quotient space of matrices via semi-tensor product[J]. Asian Journal of Control, 2019, 21(6): 2614–2623. doi: 10.1002/asjc.2156
|
[14] |
GUO Yuqian, DING Yong, and XIE Dian. Invariant subset and set stability of Boolean networks under arbitrary switching signals[J]. IEEE Transactions on Automatic Control, 2017, 62(8): 4209–4214. doi: 10.1109/TAC.2017.2688409
|
[15] |
LI Haitao, XU Xiaojing, and DING Xueying. Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect[J]. Applied Mathematics and Computation, 2019, 347: 557–565. doi: 10.1016/j.amc.2018.11.018
|
[16] |
LIANG Jinling, CHEN Hongwei, and LIU Yang. On algorithms for state feedback stabilization of Boolean control networks[J]. Automatica, 2017, 84: 10–16. doi: 10.1016/j.automatica.2017.06.040
|
[17] |
FAN Hongbiao, FENG Jun’e, MENG Min, et al. General decomposition of fuzzy relations: Semi-tensor product approach[J]. Fuzzy Sets and Systems, 2020, 384: 75–90.
|
[18] |
FU Shihua, CHENG Daizhan, FENG Jun’e, et al. Matrix expression of finite Boolean-type algebras[J]. Applied Mathematics and Computation, 2021, 395: 125880. doi: 10.1016/j.amc.2020.125880
|
[19] |
ZHAO Yin, QI Hongsheng, and CHENG Daizhan. Input-state incidence matrix of Boolean control networks and its applications[J]. Systems & Control Letters, 2010, 59(12): 767–774.
|
[20] |
韩晓光, 陈增强, 刘忠信, 等. 有界Petri网系统稳定性与镇定性分析的矩阵半张量积方法[J]. 中国科学:信息科学, 2016, 46(11): 1542–1554.
HAN Xiaoguang, CHEN Zengqiang, LIU Zhongxin, et al. Semi-tensor product of matrices approach to stability and stabilization analysis of bounded Petri net systems[J]. Scientia Sinica Informationis, 2016, 46(11): 1542–1554.
|
[21] |
ZHANG Zhipeng, CHEN Zengqiang, HAN Xiaoguang, et al. Stabilization of probabilistic finite automata based on semi-tensor product of matrices[J]. Journal of the Franklin Institute, 2020, 357(9): 5173–5186.
|
[22] |
YUE Jumei, YAN Yongyi, and CHEN Zengqiang. Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices[J]. Science China Information Sciences, 2020, 63(2): 129203. doi: 10.1007/s11432-018-9739-9
|
[23] |
ZHANG Zhipeng, CHEN Zengqiang, and LIU Zhongxin. Reachability and controllability analysis of probabilistic finite automata via a novel matrix method[J]. Asian Journal of Control, 2019, 21(6): 2578–2586. doi: 10.1002/asjc.2160
|
[24] |
CHENG Daizhan, HE Fenghua, QI Hongsheng, et al. Modeling, analysis and control of networked evolutionary games[J]. IEEE Transactions on Automatic Control, 2015, 60(9): 2402–2415. doi: 10.1109/TAC.2015.2404471
|
[25] |
XU Xiangru and HONG Yiguang. Matrix expression and reachability analysis of finite automata[J]. Journal of Control Theory and Applications, 2012, 10(2): 210–215. doi: 10.1007/s11768-012-1178-4
|
[26] |
ZAHNG Zhipeng, XIA Chengyi, and CHEN Zengqiang. On the stabilization of nondeterministic finite automata via static output feedback[J]. Applied Mathematics and Computation, 2020, 365: 124687. doi: 10.1016/j.amc.2019.124687
|
[27] |
ZHANG Zhipeng, SHU Shaolong, and XIA Chengyi. Networked opacity for finite state machine with bounded communication delays[J]. Information Sciences, 2021, 572: 57–66. doi: 10.1016/j.ins.2021.04.072
|
[28] |
HAN Xiaoguang, CHEN Zengqiang, and ZHAO Jiemei. Matrix approach to detectability of discrete event systems under partial observation[C]. The 13th IEEE Conference on Automation Science and Engineering, Xi’an, China, 2017: 187–192.
|
[29] |
CHEN Zengqiang, ZHOU Yingrui, ZHANG Zhipeng, et al. Semi-tensor product of matrices approach to the problem of fault detection for discrete event systems (DESs)[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(12): 3098–3102. doi: 10.1109/TCSII.2020.2967062
|
[30] |
ZAHNG Zhipeng, XIA Chengyi, CHEN Shengyong, et al. Reachability analysis of networked finite state machine with communication losses: A switched perspective[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 845–853. doi: 10.1109/JSAC.2020.2980920
|
[31] |
杨卓璇, 马源培, 李慧嘉. 基于DEA模型的中国水行业上市企业的效率和业务类型关系研究[J]. 聊城大学学报:自然科学版, 2020, 33(6): 12–26.
YANG Zhuoxuan, MA Yuanpei, and LI Huijia. The relationship between efficiency and services types of water industry enterprises in China based on DEA model[J]. Journal of Liaocheng University:Natural Science Edition, 2020, 33(6): 12–26.
|
[32] |
马源培, 杨卓璇, 李慧嘉. 结合Bass模型和LTV的创新产品扩散预测[J]. 聊城大学学报:自然科学版, 2020, 33(4): 26–32.
MA Yuanpei, YANG Zhuoxuan, and LI Huijia. Innovative product diffusion forecasting combined Bass model and LTV[J]. Journal of Liaocheng University:Natural Science Edition, 2020, 33(4): 26–32.
|