Citation: | PU Lei, WEI Zhenhua, HOU Zhiqiang, FENG Xinxi, HE Yujie. Siamese Network Visual Tracking Based on Asymmetric Convolution[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2957-2965. doi: 10.11999/JEIT210472 |
[1] |
RAWAT W and WANG Zenghui. Deep convolutional neural networks for image classification: A comprehensive review[J]. Neural Computation, 2017, 29(9): 2352–2449. doi: 10.1162/neco_a_00990
|
[2] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[3] |
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
|
[4] |
SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi: 10.1109/TPAMI.2013.230
|
[5] |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. . Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550.
|
[6] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. . Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 702–715.
|
[7] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/tpami.2014.2345390
|
[8] |
DANELLJAN M, KHAN F S, FELSBERG M, et al. . Adaptive color attributes for real-time visual tracking[C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097.
|
[9] |
DANELLJAN M, HÄGER G, KHAN F S, et al. . Convolutional features for correlation filter based visual tracking[C]. Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 621–629.
|
[10] |
QI Yuankai, ZHANG Shengping, QIN Lei, et al. . Hedged deep tracking[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4303–4311.
|
[11] |
ZHANG Tianzhu, XU Changsheng, and YANG M H. Learning multi-task correlation particle filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 365–378. doi: 10.1109/TPAMI.2018.2797062
|
[12] |
蒲磊, 冯新喜, 侯志强, 等. 基于空间可靠性约束的鲁棒视觉跟踪算法[J]. 电子与信息学报, 2019, 41(7): 1650–1657. doi: 10.11999/JEIT180780
PU Lei, FENG Xinxi, HOU Zhiqiang, et al. Robust visual tracking based on spatial reliability constraint[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1650–1657. doi: 10.11999/JEIT180780
|
[13] |
PU Lei, FENG Xinxi, and HOU Zhiqiang. Learning temporal regularized correlation filter tracker with spatial reliable constraint[J]. IEEE Access, 2019, 7: 81441–81450. doi: 10.1109/ACCESS.2019.2922416
|
[14] |
LI Feng, TIAN Cheng, ZUO Wangmeng, et al. . Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913.
|
[15] |
侯志强, 王帅, 廖秀峰, 等. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪[J]. 电子与信息学报, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921
HOU Zhiqiang, WANG Shuai, LIAO Xiufeng, et al. Adaptive regularized correlation filters for visual tracking based on sample quality estimation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921
|
[16] |
DANELLJAN M, HÄGER G, KHAN F S, et al. . Accurate scale estimation for robust visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, UK, 2014: 65.1–65.11.
|
[17] |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]. European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 850–865.
|
[18] |
GUO Qing, FENG Wei, ZHOU Ce, et al. Learning dynamic Siamese network for visual object tracking[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1781–1789.
|
[19] |
LI Peixia, CHEN Boyu, OUYANG Wanli, et al. . GradNet: Gradient-guided network for visual object tracking[C]. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6161–6170.
|
[20] |
LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]. Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 8971–8980.
|
[21] |
WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
|
[22] |
MA Chao, HUANG Jiabin, YANG Xiaokang, et al. . Hierarchical convolutional features for visual tracking[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–3082.
|
[23] |
BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409.
|
[24] |
MA Chao, YANG Xiaokang, ZHANG Chongyang, et al. Long-term correlation tracking[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5388–5396.
|
[25] |
VALMADRE J, BERTINETTO L, HENRIQUES J, et al. . End-to-end representation learning for Correlation Filter based tracking[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5000–5008.
|
[26] |
WANG Qiang, GAO Jin, XING Junliang, et al. DCFNet: Discriminant correlation filters network for visual tracking[EB/OL].https://arxiv.org/abs/1704.04057, 2017.
|
[27] |
ZHANG Jianming, MA Shugao, and SCLAROFF S. MEEM: Robust tracking via multiple experts using entropy minimization[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 188–203.
|