Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
PU Lei, WEI Zhenhua, HOU Zhiqiang, FENG Xinxi, HE Yujie. Siamese Network Visual Tracking Based on Asymmetric Convolution[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2957-2965. doi: 10.11999/JEIT210472
Citation: PU Lei, WEI Zhenhua, HOU Zhiqiang, FENG Xinxi, HE Yujie. Siamese Network Visual Tracking Based on Asymmetric Convolution[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2957-2965. doi: 10.11999/JEIT210472

Siamese Network Visual Tracking Based on Asymmetric Convolution

doi: 10.11999/JEIT210472
Funds:  The National Natural Science Foundation of China (62072370, 62006240)
  • Received Date: 2021-05-28
  • Rev Recd Date: 2022-05-30
  • Available Online: 2022-06-13
  • Publish Date: 2022-08-17
  • In order to solve the problem that the Siamese network can not express the rotating target, a Siamese network tracking algorithm based on asymmetric convolution is proposed. Firstly, asymmetric convolution kernels are constructed, which can be applied to existing networks. Then, under the framework of Siamese network, the convolution module of AlexNet is replaced, and the network is designed separately in the training and tracking stages. Finally, three asymmetric convolution kernels are added in parallel in the last layer of the network, and the maximum value is selected as the target position after the three response maps are weighted fused. The experimental results show that compared with SiamFC, the accuracy and success rate are improved by 8.7% and 4.5% on OTB2015 dataset, respectively.
  • loading
  • [1]
    RAWAT W and WANG Zenghui. Deep convolutional neural networks for image classification: A comprehensive review[J]. Neural Computation, 2017, 29(9): 2352–2449. doi: 10.1162/neco_a_00990
    [2]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [3]
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
    [4]
    SMEULDERS A W M, CHU D M, CUCCHIARA R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442–1468. doi: 10.1109/TPAMI.2013.230
    [5]
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. . Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550.
    [6]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. . Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 702–715.
    [7]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. doi: 10.1109/tpami.2014.2345390
    [8]
    DANELLJAN M, KHAN F S, FELSBERG M, et al. . Adaptive color attributes for real-time visual tracking[C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097.
    [9]
    DANELLJAN M, HÄGER G, KHAN F S, et al. . Convolutional features for correlation filter based visual tracking[C]. Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 621–629.
    [10]
    QI Yuankai, ZHANG Shengping, QIN Lei, et al. . Hedged deep tracking[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4303–4311.
    [11]
    ZHANG Tianzhu, XU Changsheng, and YANG M H. Learning multi-task correlation particle filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 365–378. doi: 10.1109/TPAMI.2018.2797062
    [12]
    蒲磊, 冯新喜, 侯志强, 等. 基于空间可靠性约束的鲁棒视觉跟踪算法[J]. 电子与信息学报, 2019, 41(7): 1650–1657. doi: 10.11999/JEIT180780

    PU Lei, FENG Xinxi, HOU Zhiqiang, et al. Robust visual tracking based on spatial reliability constraint[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1650–1657. doi: 10.11999/JEIT180780
    [13]
    PU Lei, FENG Xinxi, and HOU Zhiqiang. Learning temporal regularized correlation filter tracker with spatial reliable constraint[J]. IEEE Access, 2019, 7: 81441–81450. doi: 10.1109/ACCESS.2019.2922416
    [14]
    LI Feng, TIAN Cheng, ZUO Wangmeng, et al. . Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913.
    [15]
    侯志强, 王帅, 廖秀峰, 等. 基于样本质量估计的空间正则化自适应相关滤波视觉跟踪[J]. 电子与信息学报, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921

    HOU Zhiqiang, WANG Shuai, LIAO Xiufeng, et al. Adaptive regularized correlation filters for visual tracking based on sample quality estimation[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1983–1991. doi: 10.11999/JEIT180921
    [16]
    DANELLJAN M, HÄGER G, KHAN F S, et al. . Accurate scale estimation for robust visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, UK, 2014: 65.1–65.11.
    [17]
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]. European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 850–865.
    [18]
    GUO Qing, FENG Wei, ZHOU Ce, et al. Learning dynamic Siamese network for visual object tracking[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1781–1789.
    [19]
    LI Peixia, CHEN Boyu, OUYANG Wanli, et al. . GradNet: Gradient-guided network for visual object tracking[C]. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6161–6170.
    [20]
    LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]. Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 8971–8980.
    [21]
    WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226
    [22]
    MA Chao, HUANG Jiabin, YANG Xiaokang, et al. . Hierarchical convolutional features for visual tracking[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3074–3082.
    [23]
    BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: Complementary learners for real-time tracking[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1401–1409.
    [24]
    MA Chao, YANG Xiaokang, ZHANG Chongyang, et al. Long-term correlation tracking[C]. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5388–5396.
    [25]
    VALMADRE J, BERTINETTO L, HENRIQUES J, et al. . End-to-end representation learning for Correlation Filter based tracking[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5000–5008.
    [26]
    WANG Qiang, GAO Jin, XING Junliang, et al. DCFNet: Discriminant correlation filters network for visual tracking[EB/OL].https://arxiv.org/abs/1704.04057, 2017.
    [27]
    ZHANG Jianming, MA Shugao, and SCLAROFF S. MEEM: Robust tracking via multiple experts using entropy minimization[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 188–203.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (517) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return