Citation: | CHEN Lingling, CHEN Pengfei, XIE Liang, XU Minpeng, XU Dengke, YAN Huijiong, LUO Zhiguo, YAN Ye, YIN Erwei. Control System of Robotic Arm Based on Steady-State Visual Evoked Potentials in Augmented Reality Scenarios[J]. Journal of Electronics & Information Technology, 2022, 44(2): 496-506. doi: 10.11999/JEIT210465 |
[1] |
BAJAJ N M, SPIERS A J, and DOLLAR A M. State of the art in artificial wrists: A review of prosthetic and robotic wrist design[J]. IEEE Transactions on Robotics, 2019, 35(1): 261–277. doi: 10.1109/TRO.2018.2865890
|
[2] |
SOBREPERA M J, LEE V G, GARG S, et al. Perceived usefulness of a social robot augmented telehealth platform by therapists in the United States[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2946–2953. doi: 10.1109/LRA.2021.3062349
|
[3] |
LINDENROTH L, BANO S, STILLI A, et al. A fluidic soft robot for needle guidance and motion compensation in intratympanic steroid injections[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 871–878. doi: 10.1109/LRA.2021.3051568
|
[4] |
CÉSPEDES N, MÚNERA M, GÓMEZ C, et al. Social human-robot interaction for gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1299–1307. doi: 10.1109/TNSRE.2020.2987428
|
[5] |
XIE Shenglong, HU Kaiming, LIU Haitao, et al. Dynamic modeling and performance analysis of a new redundant parallel rehabilitation robot[J]. IEEE Access, 2020, 8: 222211–222225. doi: 10.1109/ACCESS.2020.3043429
|
[6] |
CIO Y S L K, RAISON M, MÉNARD C L, et al. Proof of concept of an assistive robotic arm control using artificial stereovision and eye-tracking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(12): 2344–2352. doi: 10.1109/TNSRE.2019.2950619
|
[7] |
ZHANG Xiangzi, GUO Yaqiu, GAO Boyu, et al. Alpha frequency intervention by electrical stimulation to improve performance in Mu-Based BCI[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1262–1270. doi: 10.1109/TNSRE.2020.2987529
|
[8] |
XU Minpeng, HAN Jin, WANG Yijun, et al. Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3073–3082. doi: 10.1109/TBME.2020.2975614
|
[9] |
SARASA G, GRANADOS A, and RODRÍGUEZ F B. Algorithmic clustering based on string compression to extract P300 structure in EEG signals[J]. Computer Methods and Programs in Biomedicine, 2019, 176: 225–235. doi: 10.1016/j.cmpb.2019.03.009
|
[10] |
OBEIDAT Q T, CAMPBELL T A, and KONG J. Spelling with a small mobile brain-computer interface in a moving wheelchair[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 2169–2179. doi: 10.1109/TNSRE.2017.2700025
|
[11] |
HOSNI S M, BORGHEAI S B, J MCLINDEN, et al. An fNIRS-based motor imagery BCI for ALS: A subject-specific data-driven approach[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 3063–3073. doi: 10.1109/TNSRE.2020.3038717
|
[12] |
DOWNEY J E, WEISS J M, MUELLING K, et al. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping[J]. Journal of Neuroengineering and Rehabilitation, 2016, 13(1): 28. doi: 10.1186/s12984-016-0134-9
|
[13] |
CHEN Xiaogang, ZHAO Bing, WANG Yijun, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI[J]. International Journal of Neural Systems, 2018, 28(8): 1850018. doi: 10.1142/S0129065718500181
|
[14] |
陈超, 平尧, 郝斌, 等. 基于脑机接口技术的写字系统建模仿真与实现[J]. 系统仿真学报, 2018, 30(12): 4499–4505. doi: 10.16182/j.issn1004731x.joss.201812001
CHEN Chao, PING Yao, HAO Bin, et al. Modeling, simulation and realization of writing system based on BCI technology[J]. Journal of System Simulation, 2018, 30(12): 4499–4505. doi: 10.16182/j.issn1004731x.joss.201812001
|
[15] |
徐阳. 脑机接口与机器视觉结合的机械臂共享控制研究[D]. [硕士论文], 上海交通大学, 2019. doi: 10.27307/d.cnki.gsjtu.2019.001896.
XU Yang. Shared control of a robotic ARM using non-invasive brain-computer interface and machine vision[D]. [Master dissertation], Shanghai Jiao Tong University, 2019. doi: 10.27307/d.cnki.gsjtu.2019.001896.
|
[16] |
CHEN Xiaogang, HUANG Xiaoshan, WANG Yijun, et al. Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 3140–3147. doi: 10.1109/TNSRE.2020.3038209
|
[17] |
左词立, 毛盈, 刘倩倩, 等. 不同复杂度汉字模式下运动想象脑机接口性能研究[J]. 生物医学工程学杂志, 2021, 38(3): 417–424,454. doi: 10.7507/1001-5515.202010031
ZUO Cili, MAO Ying, LIU Qianqian, et al. Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns[J]. Journal of Biomedical Engineering, 2021, 38(3): 417–424,454. doi: 10.7507/1001-5515.202010031
|
[18] |
CHEN Xiaogang, ZHAO Bing, WANG Yijun, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm[J]. Journal of Neural Engineering, 2019, 16(2): 026012. doi: 10.1088/1741-2552/aaf594
|
[19] |
WONG C M, WANG Ze, WANG Boyu, et al. Inter-and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(10): 2123–2135. doi: 10.1109/TNSRE.2020.3019276
|
[20] |
YANG Chen, HAN Xu, WANG Yijun, et al. A dynamic window recognition algorithm for SSVEP-based brain–computer interfaces using a spatio-temporal equalizer[J]. International Journal of Neural Systems, 2018, 28(10): 1850028. doi: 10.1142/S0129065718500284
|
[21] |
WONG C M, WANG Ze, ROSA A C, et al. Transferring subject-specific knowledge across stimulus frequencies in SSVEP-based BCIs[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 552–563. doi: 10.1109/TASE.2021.3054741
|
[22] |
LI Yao, XIANG Jiayi, and KESAVADAS T. Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2681–2690. doi: 10.1109/TNSRE.2020.3038718
|
[23] |
王春慧, 江京, 李海洋, 等. 基于动态自适应策略的SSVEP快速目标选择方法[J]. 清华大学学报:自然科学版, 2018, 58(9): 788–795. doi: 10.16511/j.cnki.qhdxxb.2018.22.038
WANG Chunhui, JIANG Jing, LI Haiyang, et al. High-speed target selection method for SSVEP based on a dynamic stopping strategy[J]. Journal of Tsinghua University:Science and Technology, 2018, 58(9): 788–795. doi: 10.16511/j.cnki.qhdxxb.2018.22.038
|
[24] |
陈小刚, 赵秉, 刘明, 等. 稳态视觉诱发电位脑-机接口控制机械臂系统的设计与实现[J]. 生物医学工程与临床, 2018, 22(3): 20–26. doi: 10.13339/j.cnki.sglc.20180517.002
CHEN Xiaogang, ZHAO Bing, LIU Ming, et al. Design and implementation of controlling robotic arms using steady-state visual evoked potential brain-computer interface[J]. Biomedical Engineering and Clinical Medicine, 2018, 22(3): 20–26. doi: 10.13339/j.cnki.sglc.20180517.002
|
[25] |
伏云发, 郭衍龙, 李松, 等. 基于SSVEP直接脑控机器人方向和速度研究[J]. 自动化学报, 2016, 42(11): 1630–1640.
FU Yunfa, GUO Yanlong, LI Song, et al. Direct-brain-controlled robot direction and speed based on SSVEP brain computer interaction[J]. Acta Automatica Sinica, 2016, 42(11): 1630–1640.
|
[26] |
MAYE A, ZHANG Dan, and ENGEL A K. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(7): 1026–1036. doi: 10.1109/TNSRE.2017.2666479
|
[27] |
GRUBERT J, LANGLOTZ T, ZOLLMANN S, et al. Towards pervasive augmented reality: Context-awareness in augmented reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(6): 1706–1724. doi: 10.1109/tvcg.2016.2543720
|
[28] |
GAFFARY Y, LE GOUIS B, MARCHAL M, et al. AR Feels "Softer" than VR: Haptic perception of stiffness in augmented versus virtual reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(11): 2372–2377. doi: 10.1109/TVCG.2017.2735078
|
[29] |
KOOP M M, ROSENFELDT A B, JOHNSTON J D, et al. The HoloLens augmented reality system provides valid measures of gait performance in healthy adults[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(6): 584–592. doi: 10.1109/THMS.2020.3016082
|
[30] |
WILLIAMS A S, GARCIA J, and ORTEGA F. Understanding multimodal user gesture and speech behavior for object manipulation in augmented reality using elicitation[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(12): 3479–3489. doi: 10.1109/TVCG.2020.3023566
|
[31] |
JEONG J, LEE C K, LEE B, et al. Holographically printed freeform mirror array for augmented reality near-eye display[J]. IEEE Photonics Technology Letters, 2020, 32(16): 991–994. doi: 10.1109/LPT.2020.3008215
|
[32] |
ARPAIA P, DURACCIO L, MOCCALDI N, et al. Wearable brain–computer interface instrumentation for robot-based rehabilitation by augmented reality[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6362–6371. doi: 10.1109/TIM.2020.2970846
|
[33] |
PARK S, CHA H S, and IM C H. Development of an online home appliance control system using augmented reality and an SSVEP-based brain–computer interface[J]. IEEE Access, 2019, 7: 163604–163614. doi: 10.1109/ACCESS.2019.2952613
|
[34] |
ZHAO Xincan, LIU Chenyang, XU Zongxin, et al. SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses[J]. IEEE Access, 2020, 8: 5990–5998. doi: 10.1109/ACCESS.2019.2963442
|
[35] |
ZHOU Yajun, HE Shenghong, HUANG Qiyun, et al. A hybrid asynchronous brain-computer interface combining SSVEP and EOG signals[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(10): 2881–2892. doi: 10.1109/TBME.2020.2972747
|