Advanced Search
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
MA Bin, CHEN Xin, XIE Xianzhong, ZHONG Shilin. Vertical Handover Algorithm Considering Terminal Security and Resource Scheduling[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2792-2801. doi: 10.11999/JEIT210450
Citation: MA Bin, CHEN Xin, XIE Xianzhong, ZHONG Shilin. Vertical Handover Algorithm Considering Terminal Security and Resource Scheduling[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2792-2801. doi: 10.11999/JEIT210450

Vertical Handover Algorithm Considering Terminal Security and Resource Scheduling

doi: 10.11999/JEIT210450
Funds:  The Major Project of Science and Technology Research of Chongqing Education Commission (KJZD-M201900602), The Key Project of Science and Technology Research of Chongqing Education Commission (KJZD-M201800603), The Foundation Research and Advanced Exploration Project of Chongqing (CSTC2018jcyjAX0432)
  • Received Date: 2021-05-25
  • Accepted Date: 2022-01-12
  • Rev Recd Date: 2021-12-17
  • Available Online: 2022-02-11
  • Publish Date: 2022-08-17
  • In ultra-dense heterogeneous wireless networks with malicious terminals, a Vertical Handover Algorithm Considering Terminal Security and Resource Scheduling (CTSRS-VHA) is proposed to solve the problem of low resource allocation efficiency and congestion caused by high concurrent access requests. Firstly, the terminal security evaluation model is built on the network side through the attack detection algorithm based on the finite state machine, and the terminal security degree is calculated. Secondly, a multi-objective optimization function is constructed based on network congestion, user data transmission rate and terminal security degree. Thirdly, by analyzing the comprehensive benefits between the network and the terminal, the multi-objective optimization function is converted into a single objective optimization function, and the solution is proved to be Pareto optimal. Finally, the simulation results and analysis show that the proposed algorithm can improve the network access security level and total throughput, and reduce the network congestion and handover failure rate.
  • loading
  • [1]
    FANG Dongfeng, QIAN Yi, and HU R Q. Security for 5G mobile wireless networks[J]. IEEE Access, 2017, 6: 4850–4874. doi: 10.1109/ACCESS.2017.2779146
    [2]
    LALROPUIA K C and GUPTA V. A Bayesian game model and network availability model for small cells under Denial of Service (DoS) attack in 5G wireless communication network[J]. Wireless Networks, 2020, 26: 557–572. doi: 10.1007/s11276-019-02163-8
    [3]
    JAVED M A and NIAZI S K. 5G security artifacts (DoS / DDoS and authentication)[C]. 2019 International Conference on Communication Technologies (ComTech), Rawalpindi, Pakistan, 2019: 127–133.
    [4]
    LIANG Gen, SUN Guoxi, FANG Jingcheng, et al. An access selection algorithm for heterogeneous wireless networks based on optimal resource allocation[J]. Wireless Communications and Mobile Computing, 2020, 2020: 8844015. doi: 10.1155/2020/8844015
    [5]
    LIU Luning, WANG Luhan, and WEN Xiangming. Joint network selection and traffic allocation in multi-access edge computing-based vehicular crowdsensing[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2020: 1184–1189.
    [6]
    TAN Xiaonan, CHEN Geng, and SUN Hongyu. Vertical handover algorithm based on multi-attribute and neural network in heterogeneous integrated network[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020: 202. doi: 10.1186/s13638-020-01822-1
    [7]
    WANG Shumin, DENG Honggui, XIONG Rujing, et al. A multi-objective model-based vertical handoff algorithm for heterogeneous wireless networks[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021: 75. doi: 10.1186/s13638-021-01952-0
    [8]
    马彬, 张文静, 谢显中. 面向终端个性化服务的模糊垂直切换算法[J]. 电子与信息学报, 2017, 39(6): 1284–1290. doi: 10.11999/JEIT160839

    MA Bin, ZHANG Wenjing, and XIE Xianzhong. Individualization service oriented fuzzy vertical handover algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1284–1290. doi: 10.11999/JEIT160839
    [9]
    OZHELVACI A and MA Maode. Secure and efficient vertical handover authentication for 5G HetNets[C]. 2018 IEEE International Conference on Information Communication and Signal Processing (ICICSP), Singapore, 2018: 27–32.
    [10]
    CAO Wei, MA Nan, and ZHANG Ping. Security analysis of DoS attack against the LTE-A system[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 1287–1292.
    [11]
    YENGI Y, KAVAK A, and ARSLAN H. Physical layer detection of malicious relays in LTE-A network using unsupervised learning[J]. IEEE Access, 2020, 8: 154713–154726. doi: 10.1109/ACCESS.2020.3017045
    [12]
    FANG Liming, ZHAO Bo, LI Yang, et al. Countermeasure based on smart contracts and AI against DoS/DDoS attack in 5G circumstances[J]. IEEE Network, 2020, 34(6): 54–61. doi: 10.1109/MNET.021.1900614
    [13]
    HU Xinxin, LIU Caixia, LIU Shuxin, et al. A systematic analysis method for 5G non-access stratum signalling security[J]. IEEE Access, 2019, 7: 125424–125441. doi: 10.1109/ACCESS.2019.2937997
    [14]
    LIU Chibiao and QIU Jinming. Performance study of 802.11w for preventing DoS attacks on wireless local area networks[J]. Wireless Personal Communications, 2017, 95(2): 1031–1053. doi: 10.1007/s11277-016-3812-9
    [15]
    YE Ayong, LI Qing, ZHANG Qiang, et al. Detection of spoofing attacks in WLAN-based positioning systems using WiFi hotspot tags[J]. IEEE Access, 2020, 8: 39768–39780. doi: 10.1109/ACCESS.2020.2976189
    [16]
    JOVER R P and MAROJEVIC V. Security and protocol exploit analysis of the 5G specifications[J]. IEEE Access, 2019, 7: 24956–24963. doi: 10.1109/ACCESS.2019.2899254v
    [17]
    KULSHRESTHA S and PATEL S. An efficient host overload detection algorithm for cloud data center based on exponential weighted moving average[J]. International Journal of Communication Systems, 2021, 34(4): e4708. doi: 10.1002/dac.4708
    [18]
    马彬, 汪栋, 谢显中. 异构无线网络中新的成本感知网络切换方案[J]. 电子学报, 2018, 46(5): 1227–1233. doi: 10.3969/j.issn.0372-2112.2018.05.031

    MA Bin, WANG Dong, and XIE Xianzhong. A novel cost-aware network handoff scheme in heterogeneous wireless network[J]. Acta Electronica Sinica, 2018, 46(5): 1227–1233. doi: 10.3969/j.issn.0372-2112.2018.05.031
    [19]
    YU Hewei and ZHANG Biao. A hybrid MADM algorithm based on attribute weight and utility value for heterogeneous network selection[J]. Journal of Network and Systems Management, 2019, 27(3): 756–783. doi: 10.1007/s10922-018-9483-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (602) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return