Citation: | WANG Xin, ZHANG Xiangliang, LÜ Guofang. Remote Sensing Image Change Detection Based on Fully Convolutional Neural Networks with Edge Change Information[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1694-1703. doi: 10.11999/JEIT210389 |
[1] |
徐从安, 吕亚飞, 张筱晗, 等. 基于双重注意力机制的遥感图像场景分类特征表示方法[J]. 电子与信息学报, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
XU Congan, LÜ Yafei, ZHANG Xiaohan, et al. A discriminative feature representation method based on dual attention mechanism for remote sensing image scene classification[J]. Journal of Electronics &Information Technology, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
|
[2] |
LYU H, LU Hui, MOU Lichao, et al. Long-term annual mapping of four cities on different continents by applying a deep information learning method to Landsat data[J]. Remote Sensing, 2018, 10(3): 471. doi: 10.3390/rs10030471
|
[3] |
冀广宇, 梁兴东, 董勇伟, 等. 基于体散射约束的极化SAR相干变化检测方法[J]. 电子与信息学报, 2018, 40(10): 2461–2469. doi: 10.11999/JEIT180035
JI Guangyu, LIANG Xingdong, DONG Yongwei, et al. Polarimetric SAR coherent change detection method based on volume scattering constraint[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2461–2469. doi: 10.11999/JEIT180035
|
[4] |
HUANG Fenghua, YU Ying, and FENG Tinghao. Automatic building change image quality assessment in high resolution remote sensing based on deep learning[J]. Journal of Visual Communication and Image Representation, 2019, 63: 102585. doi: 10.1016/j.jvcir.2019.102585
|
[5] |
CHEN Jin, CHEN Xuehong, CUI Xihong, et al. Change vector analysis in posterior probability space: A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 317–321. doi: 10.1109/LGRS.2010.2068537
|
[6] |
LV Zhiyong, LIU Tongfei, SHI Cheng, et al. Novel land cover change detection method based on k-Means clustering and adaptive majority voting using bitemporal remote sensing images[J]. IEEE Access, 2019, 7: 34425–34437. doi: 10.1109/ACCESS.2019.2892648
|
[7] |
MALPICA J A, ALONSO M C, PAPÍ F, et al. Change detection of buildings from satellite imagery and lidar data[J]. International Journal of Remote Sensing, 2013, 34(5): 1652–1675. doi: 10.1080/01431161.2012.725483
|
[8] |
QIN Rongjun, HUANG Xin, GRUEN A, et al. Object-based 3-D building change detection on multitemporal stereo images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 2125–2137. doi: 10.1109/JSTARS.2015.2424275
|
[9] |
SAHA S, BOVOLO F, and BRUZZONE L. Unsupervised deep change vector analysis for multiple-change detection in VHR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3677–3693. doi: 10.1109/TGRS.2018.2886643
|
[10] |
CHEN Hongruixuan, WU Chen, DU Bo, et al. Deep siamese multi-scale convolutional network for change detection in multi-temporal VHR images[C]. The 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images, Shanghai, China, 2019: 1–4.
|
[11] |
LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
|
[12] |
LAN Lingxiang, WU Dong, and CHI Mingmin. Multi-temporal change detection based on deep semantic segmentation networks[C]. The 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images, Shanghai, China, 2019: 1–4.
|
[13] |
PENG Daifeng, ZHANG Yongjun, and GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382. doi: 10.3390/rs11111382
|
[14] |
HOU Bin, WANG Yunhong, and LIU Qingjie. Change detection based on deep features and low rank[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2418–2422. doi: 10.1109/LGRS.2017.2766840
|
[15] |
DAUDT R C, LE SAUX B, and BOULCH A. Fully convolutional siamese networks for change detection[C]. The 2018 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 4063–4067.
|
[16] |
ZHANG Chenxiao, YUE Peng, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183–200. doi: 10.1016/j.isprsjprs.2020.06.003
|
[17] |
JIANG Huiwei, HU Xiangyun, LI Kun, et al. PGA-SiamNet: Pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484. doi: 10.3390/rs12030484
|
[18] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[19] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851
|
[20] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1790–2022.
|
[21] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
|
[22] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
|
[23] |
倪黎, 邹卫军. 基于SE模块改进Xception的动物种类识别[J]. 导航与控制, 2020, 19(2): 106–111. doi: 10.3969/j.issn.1674-5558.2020.02.015
NI Li and ZOU Weijun. Recognition of animal species based on improved Xception by SE module[J]. Navigation and Control, 2020, 19(2): 106–111. doi: 10.3969/j.issn.1674-5558.2020.02.015
|
[24] |
CHEN Hao and SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662. doi: 10.3390/rs12101662
|