Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
Xu Shuwen, Ru Hongtao. Small Target Detection on Sea Surface Based on Label Propagation Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2119-2126. doi: 10.11999/JEIT210382
Citation: Xu Shuwen, Ru Hongtao. Small Target Detection on Sea Surface Based on Label Propagation Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2119-2126. doi: 10.11999/JEIT210382

Small Target Detection on Sea Surface Based on Label Propagation Algorithm

doi: 10.11999/JEIT210382
Funds:  The National Natural Science Foundation of China (61871303,62071346), The Fund for Foreign Scholars in University Research and Teaching Programs (The 111 Project) (B18039)
  • Received Date: 2021-05-07
  • Rev Recd Date: 2021-08-15
  • Available Online: 2021-08-30
  • Publish Date: 2022-06-21
  • Sea clutter and small targets have complex characteristics in the high-resolution radar system. For the target with small radar cross section, the traditional detection method has limited detection performance. In order to break through the critical signal to clutter ratio state, one or more features of radar echo can be extracted for joint feature detection, which is an important way to achieve effective detection in the case of critical signal to clutter ratio. At present, convex hull learning algorithm can be used to calculate the decision region and control effectively the false alarm probability in the feature space of three dimensions and below, but the computational complexity of convex hull learning algorithm is increased above the feature space, and make it difficult to detect target. To solve this problem, a small target detection method based on label propagation algorithm is proposed. It can detect small target in high-dimensional feature space and the false alarm can be effectively controlled. The experimental results on the actual database show, the detection probabilities of 88.4% and 92.0% are obtained in 0.512 s and 1.024 s respectively, which are 3.3% and 2.8% higher than those of the K-Nearest Neighbor (KNN) detector.
  • loading
  • [1]
    许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
    [2]
    HU Jing, TUNG W W, and GAO Jianbo. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136–143. doi: 10.1109/TAP.2005.861541
    [3]
    陈小龙, 刘宁波, 王国庆, 等. 基于高斯短时分数阶Fourier变换的海面微动目标检测方法[J]. 电子学报, 2014, 42(5): 971–977. doi: 10.3969/j.issn.0372-2112.2014.05.021

    CHEN Xiaolong, LIU Ningbo, WANG Guoqing, et al. Gaussian short-time fractional Fourier transform based detection algorithm of target with micro-motion at sea[J]. Acta Electronica Sinica, 2014, 42(5): 971–977. doi: 10.3969/j.issn.0372-2112.2014.05.021
    [4]
    SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260
    [5]
    XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560.
    [6]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
    [7]
    时艳玲, 姚婷婷, 郭亚星. 基于图连通密度的海面漂浮小目标检测[J]. 电子与信息学报, 2021, 43(11): 3185–3192. doi: 10.11999/JEIT201028

    SHI Yanling, YAO Tingting, and GUO Yaxing. Floating small target detection based on graph connected density in sea surface[J]. Journal of Electronics and Information Technology, 2021, 43(11): 3185–3192. doi: 10.11999/JEIT201028
    [8]
    贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    [9]
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    [10]
    苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    [11]
    SHUI Penglang, GUO Zixun, and SHI Sainan. Feature-compression-based detection of sea-surface small targets[J]. IEEE Access, 2020, 8: 8371–8385. doi: 10.1109/ACCESS.2019.2962793
    [12]
    LI Yuzhou, XIE Pengcheng, TANG Zeshen, et al. SVM-based sea-surface small target detection: a false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1225–1229. doi: 10.1109/LGRS.2019.2894385
    [13]
    ZHOU Hongkuan and JIANG Tao. Decision tree based sea-surface weak target detection with false alarm rate controllable[J]. IEEE Signal Processing Letters, 2019, 26(6): 793–797. doi: 10.1109/LSP.2019.2909584
    [14]
    郭子薰, 水鹏朗, 白晓惠, 等. 海杂波中基于可控虚警K近邻的海面小目标检测[J]. 雷达学报, 2020, 9(4): 654–663. doi: 10.12000/JR20055

    GUO Zixun, SHUI Penglang, BAI Xiaohui, et al. Sea-surface small target detection based on K-NN with controlled false alarm rate in sea clutter[J]. Journal of Radars, 2020, 9(4): 654–663. doi: 10.12000/JR20055
    [15]
    张俊丽, 常艳丽, 师文. 标签传播算法理论及其应用研究综述[J]. 计算机应用研究, 2013, 30(1): 21–25. doi: 10.3969/j.issn.1001-3695.2013.01.004

    ZHANG Junli, CHANG Yanli, and SHI Wen. Overview on label propagation algorithm and applications[J]. Application Research of Computers, 2013, 30(1): 21–25. doi: 10.3969/j.issn.1001-3695.2013.01.004
    [16]
    Cognitive Systems Laboratory. IPIX radar database[EB/OL]. http://soma.mcmaster.ca//ipix.php, 2012.
    [17]
    中国雷达行业协会. 雷达对海探测数据[EB/OL]. http://radars.ie.ac.cn/web/data/getData?dataType=DatasetofRadarDetectingSea, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1170) PDF downloads(189) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return