Citation: | CHEN Lei, ZHANG Yaowei, WANG Shuo, ZHOU Jing, TIAN Chunsheng, PANG Yongjiang, MA Xiaojing, ZHOU Chong, DU Zhong. Key Technology and Development of Triple Modular Redundancy Tool for FPGA[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2230-2244. doi: 10.11999/JEIT210330 |
[1] |
VON NEUMANN J. Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components[M]. SHANNON C E and MCCARTHY J. Automata Studies. Princeton: Princeton University Press, 1956: 43–98.
|
[2] |
LYONS R E and VANDERKULK W. The use of triple-modular redundancy to improve computer reliability[J]. IBM Journal of Research and Development, 1962, 6(2): 200–209. doi: 10.1147/rd.62.0200
|
[3] |
黄影, 张春元, 刘东. SRAM型FPGA的抗SEU方法研究[J]. 中国空间科学技术, 2007(4): 57–65. doi: 10.3321/j.issn:1000-758X.2007.04.010
HUANG Ying, ZHANG Chunyuan, and LIU Dong. Research on SEU mitigation of FPGA based-on SRAM[J]. Chinese Space Science and Technology, 2007(4): 57–65. doi: 10.3321/j.issn:1000-758X.2007.04.010
|
[4] |
PRATT B, CAFFREY M, GRAHAM P, et al. Improving FPGA design robustness with partial TMR[C]. 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, USA, 2006: 226–232.
|
[5] |
SAMUDRALA P K, RAMOS J, and KATKOORI S. Selective triple modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2957–2969. doi: 10.1109/TNS.2004.834955
|
[6] |
GOMES I A C, MARTINS M, REIS A, et al. Using only redundant modules with approximate logic to reduce drastically area overhead in TMR[C]. 2015 16th Latin-American Test Symposium (LATS), Puerto Vallarta, Mexico, 2015: 1–6.
|
[7] |
SHASHIDHARA B, JADHAV S, and KIM Y S. Reconfigurable fault tolerant processor on a SRAM based FPGA[C]. 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, USA, 2020: 151–154.
|
[8] |
段小虎, 马小博, 程俊强. SRAM工艺FPGA三模冗余设计故障管理与恢复[J]. 信息通信, 2020(3): 139–141,143. doi: 10.3969/j.issn.1673-1131.2020.03.059
DUAN Xiaohu, MA Xiaobo, and CHENG Junqiang. Fault management and recovery of triple modular redundancy design for SRAM-based FPGA[J]. Information &Communications, 2020(3): 139–141,143. doi: 10.3969/j.issn.1673-1131.2020.03.059
|
[9] |
徐伟杰, 谢永乐, 彭礼彪, 等. 基于SRAM型FPGA的实时容错自修复系统设计方法[J]. 电子技术应用, 2019, 45(7): 50–55. doi: 10.16157/j.issn.0258-7998.190480
XU Weijie, XIE Yongle, PENG Libiao, et al. SRAM based FPGA system capable of runtime fault tolerance and recovery[J]. Application of Electronic Technique, 2019, 45(7): 50–55. doi: 10.16157/j.issn.0258-7998.190480
|
[10] |
张超, 赵伟, 刘峥. 基于FPGA的三模冗余容错技术研究[J]. 现代电子技术, 2011, 34(5): 167–171. doi: 10.3969/j.issn.1004-373X.2011.05.051
ZHANG Chao, ZHAO Wei, and LIU Zheng. Research of TMR-based fault-tolerance techniques based on FPGA[J]. Modern Electronics Technique, 2011, 34(5): 167–171. doi: 10.3969/j.issn.1004-373X.2011.05.051
|
[11] |
NIKNAHAD M. Using Fine Grain Approaches for Highly Reliable Design of FPGA-Based Systems in Space[M]. Karlsruhe: KIT Scientific Publishing, 2013.
|
[12] |
BENITES L A C. Automated design flow for applying triple modular redundancy in complex semi-custom digital integrated circuits[D]. [Master dissertation], Universidade Federal do Rio Grande Do Sul, 2018.
|
[13] |
BENITES L A C and KASTENSMIDT F L. Automated design flow for applying Triple Modular Redundancy (TMR) in complex digital circuits[C]. 2018 IEEE 19th Latin-American Test Symposium (LATS), São Paulo, Brazil, 2018: 1–4.
|
[14] |
BENITES L A C, BENEVENUTI F, DE OLIVEIRA Á B, et al. Reliability calculation with respect to functional failures induced by radiation in TMR arm cortex-M0 soft-core embedded into SRAM-based FPGA[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1433–1440. doi: 10.1109/TNS.2019.2921796
|
[15] |
BENEVENUTI F, CHIELLE E, TONFAT J, et al. Experimental applications on SRAM-based FPGA for the NanosatC-BR2 scientific mission[C]. 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 2019: 140–146.
|
[16] |
BERG M and LABEL K A. Verification of triple modular redundancy (TMR) insertion for reliable and trusted systems[C]. Proceedings of the Government Microcircuit Applications & Critical Technology Conference, Orlando, USA, 2016.
|
[17] |
PRATT B, WIRTHLIN M, CAFFREY M, et al. Improving FPGA reliability in harsh environments using triple modular redundancy with more frequent voting[C]. Proceedings of the Prentice Hall. Military and Aerospace FPGA Applications Conference, Palm Beach, USA, 2007.
|
[18] |
CANNON M J. Improving the single event effect response of triple modular redundancy on SRAM FPGAs through placement and routing[D]. [Ph. D. dissertation], Brigham Young University, 2019.
|
[19] |
ROWBERRY H C. A soft-error reliability testing platform for FPGA-based network systems[D]. [Master dissertation], Brigham Young University, 2019.
|
[20] |
STODDARD A G. Configuration scrubbing architectures for high-reliability FPGA systems[D]. [Master dissertation], Brigham Young University, 2015.
|
[21] |
严健生, 杨柳青. 卫星用SRAM型FPGA抗单粒子翻转可靠性设计研究[J]. 科技创新与应用, 2021(9): 48–50,53.
YAN Jiansheng and YANG Liuqing. Reliability design of anti-single event upset (SEU) of SRAM-FPGA for satellites[J]. Technology Innovation and Application, 2021(9): 48–50,53.
|
[22] |
HERRERA-ALZU I and LOPEZ-VALLEJO M. Design techniques for Xilinx Virtex FPGA configuration memory scrubbers[J]. IEEE Transactions on Nuclear Science, 2013, 60(1): 376–385. doi: 10.1109/TNS.2012.2231881
|
[23] |
HOQUE K A. Early dependability analysis of FPGA-based space applications using formal verification[D]. [Ph. D. dissertation], Concordia University, 2016.
|
[24] |
NAZAR G L, SANTOS L P, and CARRO L. Scrubbing unit repositioning for fast error repair in FPGAs[C]. 2013 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, Montreal, Canada, 2013: 1–10.
|
[25] |
NAZAR G L, SANTOS L P, and CARRO L. Fine-grained fast field-programmable gate array scrubbing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(5): 893–904. doi: 10.1109/TVLSI.2014.2330742
|
[26] |
ZHANG Rongsheng, XIAO Liyi, CAO Xuebing, et al. A fast scrubbing method based on triple modular redundancy for SRAM-based FPGAs[C]. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 2018: 1–3.
|
[27] |
JOHNSON J M. Synchronization voter insertion algorithms for FPGA designs using triple modular redundancy[D]. [Master dissertation], Brigham Young University, 2010.
|
[28] |
JOHNSON J M and WIRTHLIN M J. Voter insertion algorithms for FPGA designs using triple modular redundancy[C]. Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, USA, 2010: 249–258.
|
[29] |
KHATRI A R, HAYEK A, and BÖRCSÖK J. RASP-TMR: An automatic and fast synthesizable Verilog code generator tool for the implementation and evaluation of TMR approach[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(8): 590–597. doi: 10.14569/IJACSA.2018.090875
|
[30] |
KHATRI A R. Overview of fault tolerance techniques and the proposed TMR generator tool for FPGA designs[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(4): 749–753. doi: 10.14569/IJACSA.2020.0110497
|
[31] |
KULIS S. Single event effects mitigation with TMRG tool[J]. Journal of Instrumentation, 2017, 12: C01082. doi: 10.1088/1748-0221/12/01/C01082
|
[32] |
CERN. Triple Modular Redundancy Generator (TMRG)[EB/OL]. https://tmrg.web.cern.ch/tmrg/tmrg.pdf, 2020.
|
[33] |
KULIS S. Single event upsets mitigation techniques[EB/OL]. https://indico.cern.ch/event/465343/attachments/1256299/1854682/tmrg_skulis_ep_ese.pdf, 2016.
|
[34] |
Xilinx. Xilinx TMRTool Industry’s first triple modular redundancy development tool for re-configurable FPGAs[EB/OL]. https://www.xilinx.com/publications/prod_mktg/TRMTool-2015.pdf, 2015.
|
[35] |
CARMICHAEL C. Triple module redundancy design techniques for Virtex FPGAs[EB/OL]. Xilinx Application Note XAPP197, https://china.xilinx.com/content/dam/xilinx/support/documents/application_notes/xapp197.pdf, 2001.
|
[36] |
Xilinx. Xilinx TMRTool User Guide: TMRTool software Version 13.2[EB/OL]. https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug156-tmrtool.pdf, 2017.
|
[37] |
WIRTHLIN M. The benefits of feedback TMR for SEU tolerance of SRAM FPGA designs[EB/OL]. https://indico.esa.int/event/130/contributions/723/attachments/781/958/ESA_SEFUW_TMR_March_2016-3.pdf, 2016.
|
[38] |
ANWER J, PLATZNER M, and MEISNER S. FPGA redundancy configurations: An automated design space exploration[C]. 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, USA, 2014: 275–280.
|
[39] |
DANG Wansheng. FPGA radiation effects mitigation technology on logic synthesis[EB/OL]. 2020.
|
[40] |
GRAPHICS M. Precision Hi-Rel synthesis software[EB/OL]. https://eda.sw.siemens.com/en-US/ic/precision/hi-rel/, 2018.
|
[41] |
MERKELOV F. Design techniques for implementing highly reliable designs using FPGAs[EB/OL]. https://www.microsemi.com/document-portal/doc_view/132934-design-techniques-for-implementing-high-reliable-designs-using-microsemi-space-fpgas-russia-2013, 2013.
|
[42] |
LEE G, AGIAKATSIKAS D, WU Tong, et al. TLegUp: A TMR code generation tool for SRAM-based FPGA applications using HLS[C]. 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, USA, 2017: 129–132.
|
[43] |
BERNARDI M, CETIN E, and DIESSEL O. Correct high level synthesis of triple modular redundant user circuits for FPGAs[R]. UNSW-CSE-TR-201804, 2018.
|
[44] |
AGIAKATSIKAS D. High-level synthesis of triple modular redundant FPGA circuits with energy efficient error recovery mechanisms[D]. [Ph. D. dissertation], University of New South Wales, 2019.
|
[45] |
ZHU Zhiqi, TAHER F N, and SCHAFER B C. Exploring design trade-offs in fault-tolerant behavioral hardware accelerators[C]. Proceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, USA, 2019: 291–294.
|
[46] |
PARVIS M and AGNELLO M. High-energy physics fault tolerance metrics and testing methodologies for SRAM-based FPGAs[D]. [Master dissertation], Politecnico di Torino, 2018.
|
[47] |
Xilinx. Microblaze triple modular redundancy(TMR) subsystem v1.0: Product guide[EB/OL]. https://www.xilinx.com/support/documentation/ip_documentation/tmr/v1_0/pg268-tmr.pdf, 2019.
|