Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CHEN Lei, ZHANG Yaowei, WANG Shuo, ZHOU Jing, TIAN Chunsheng, PANG Yongjiang, MA Xiaojing, ZHOU Chong, DU Zhong. Key Technology and Development of Triple Modular Redundancy Tool for FPGA[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2230-2244. doi: 10.11999/JEIT210330
Citation: CHEN Lei, ZHANG Yaowei, WANG Shuo, ZHOU Jing, TIAN Chunsheng, PANG Yongjiang, MA Xiaojing, ZHOU Chong, DU Zhong. Key Technology and Development of Triple Modular Redundancy Tool for FPGA[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2230-2244. doi: 10.11999/JEIT210330

Key Technology and Development of Triple Modular Redundancy Tool for FPGA

doi: 10.11999/JEIT210330
Funds:  The National Science and Technology Major Project (2009ZYHJ0005)
  • Received Date: 2021-04-20
  • Rev Recd Date: 2022-03-23
  • Available Online: 2022-04-12
  • Publish Date: 2022-06-21
  • SRAM-based FPGAs are sensitive to single event effect in space radiation environment, resulting in soft errors. Triple Modular Redundancy (TMR) is the most widely used circuit hardening technology to alleviate FPGA soft errors. This paper introduces first the current research status of TMR technology, and then summarizes four key technologies and their implementation principles of fine-grained TMR technology, system partitioning technology, configuration scrubbing technology and state synchronization technology, which are commonly used in TMR tools. As the high-level synthesis technology of FPGA becomes more and more mature, the TMR tools based on high level synthesis have gradually become a new research branch. The current mainstream TMR tools based on the register transfer level, TMR tools based on important soft-core resources, and the emerging TMR tools based on high-level synthesis are classified and introduced. Finally, the future development trend of TMR tool for FPGA is summarized and forecasted.
  • loading
  • [1]
    VON NEUMANN J. Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components[M]. SHANNON C E and MCCARTHY J. Automata Studies. Princeton: Princeton University Press, 1956: 43–98.
    [2]
    LYONS R E and VANDERKULK W. The use of triple-modular redundancy to improve computer reliability[J]. IBM Journal of Research and Development, 1962, 6(2): 200–209. doi: 10.1147/rd.62.0200
    [3]
    黄影, 张春元, 刘东. SRAM型FPGA的抗SEU方法研究[J]. 中国空间科学技术, 2007(4): 57–65. doi: 10.3321/j.issn:1000-758X.2007.04.010

    HUANG Ying, ZHANG Chunyuan, and LIU Dong. Research on SEU mitigation of FPGA based-on SRAM[J]. Chinese Space Science and Technology, 2007(4): 57–65. doi: 10.3321/j.issn:1000-758X.2007.04.010
    [4]
    PRATT B, CAFFREY M, GRAHAM P, et al. Improving FPGA design robustness with partial TMR[C]. 2006 IEEE International Reliability Physics Symposium Proceedings, San Jose, USA, 2006: 226–232.
    [5]
    SAMUDRALA P K, RAMOS J, and KATKOORI S. Selective triple modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2957–2969. doi: 10.1109/TNS.2004.834955
    [6]
    GOMES I A C, MARTINS M, REIS A, et al. Using only redundant modules with approximate logic to reduce drastically area overhead in TMR[C]. 2015 16th Latin-American Test Symposium (LATS), Puerto Vallarta, Mexico, 2015: 1–6.
    [7]
    SHASHIDHARA B, JADHAV S, and KIM Y S. Reconfigurable fault tolerant processor on a SRAM based FPGA[C]. 2020 IEEE International Conference on Electro Information Technology (EIT), Chicago, USA, 2020: 151–154.
    [8]
    段小虎, 马小博, 程俊强. SRAM工艺FPGA三模冗余设计故障管理与恢复[J]. 信息通信, 2020(3): 139–141,143. doi: 10.3969/j.issn.1673-1131.2020.03.059

    DUAN Xiaohu, MA Xiaobo, and CHENG Junqiang. Fault management and recovery of triple modular redundancy design for SRAM-based FPGA[J]. Information &Communications, 2020(3): 139–141,143. doi: 10.3969/j.issn.1673-1131.2020.03.059
    [9]
    徐伟杰, 谢永乐, 彭礼彪, 等. 基于SRAM型FPGA的实时容错自修复系统设计方法[J]. 电子技术应用, 2019, 45(7): 50–55. doi: 10.16157/j.issn.0258-7998.190480

    XU Weijie, XIE Yongle, PENG Libiao, et al. SRAM based FPGA system capable of runtime fault tolerance and recovery[J]. Application of Electronic Technique, 2019, 45(7): 50–55. doi: 10.16157/j.issn.0258-7998.190480
    [10]
    张超, 赵伟, 刘峥. 基于FPGA的三模冗余容错技术研究[J]. 现代电子技术, 2011, 34(5): 167–171. doi: 10.3969/j.issn.1004-373X.2011.05.051

    ZHANG Chao, ZHAO Wei, and LIU Zheng. Research of TMR-based fault-tolerance techniques based on FPGA[J]. Modern Electronics Technique, 2011, 34(5): 167–171. doi: 10.3969/j.issn.1004-373X.2011.05.051
    [11]
    NIKNAHAD M. Using Fine Grain Approaches for Highly Reliable Design of FPGA-Based Systems in Space[M]. Karlsruhe: KIT Scientific Publishing, 2013.
    [12]
    BENITES L A C. Automated design flow for applying triple modular redundancy in complex semi-custom digital integrated circuits[D]. [Master dissertation], Universidade Federal do Rio Grande Do Sul, 2018.
    [13]
    BENITES L A C and KASTENSMIDT F L. Automated design flow for applying Triple Modular Redundancy (TMR) in complex digital circuits[C]. 2018 IEEE 19th Latin-American Test Symposium (LATS), São Paulo, Brazil, 2018: 1–4.
    [14]
    BENITES L A C, BENEVENUTI F, DE OLIVEIRA Á B, et al. Reliability calculation with respect to functional failures induced by radiation in TMR arm cortex-M0 soft-core embedded into SRAM-based FPGA[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1433–1440. doi: 10.1109/TNS.2019.2921796
    [15]
    BENEVENUTI F, CHIELLE E, TONFAT J, et al. Experimental applications on SRAM-based FPGA for the NanosatC-BR2 scientific mission[C]. 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 2019: 140–146.
    [16]
    BERG M and LABEL K A. Verification of triple modular redundancy (TMR) insertion for reliable and trusted systems[C]. Proceedings of the Government Microcircuit Applications & Critical Technology Conference, Orlando, USA, 2016.
    [17]
    PRATT B, WIRTHLIN M, CAFFREY M, et al. Improving FPGA reliability in harsh environments using triple modular redundancy with more frequent voting[C]. Proceedings of the Prentice Hall. Military and Aerospace FPGA Applications Conference, Palm Beach, USA, 2007.
    [18]
    CANNON M J. Improving the single event effect response of triple modular redundancy on SRAM FPGAs through placement and routing[D]. [Ph. D. dissertation], Brigham Young University, 2019.
    [19]
    ROWBERRY H C. A soft-error reliability testing platform for FPGA-based network systems[D]. [Master dissertation], Brigham Young University, 2019.
    [20]
    STODDARD A G. Configuration scrubbing architectures for high-reliability FPGA systems[D]. [Master dissertation], Brigham Young University, 2015.
    [21]
    严健生, 杨柳青. 卫星用SRAM型FPGA抗单粒子翻转可靠性设计研究[J]. 科技创新与应用, 2021(9): 48–50,53.

    YAN Jiansheng and YANG Liuqing. Reliability design of anti-single event upset (SEU) of SRAM-FPGA for satellites[J]. Technology Innovation and Application, 2021(9): 48–50,53.
    [22]
    HERRERA-ALZU I and LOPEZ-VALLEJO M. Design techniques for Xilinx Virtex FPGA configuration memory scrubbers[J]. IEEE Transactions on Nuclear Science, 2013, 60(1): 376–385. doi: 10.1109/TNS.2012.2231881
    [23]
    HOQUE K A. Early dependability analysis of FPGA-based space applications using formal verification[D]. [Ph. D. dissertation], Concordia University, 2016.
    [24]
    NAZAR G L, SANTOS L P, and CARRO L. Scrubbing unit repositioning for fast error repair in FPGAs[C]. 2013 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, Montreal, Canada, 2013: 1–10.
    [25]
    NAZAR G L, SANTOS L P, and CARRO L. Fine-grained fast field-programmable gate array scrubbing[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(5): 893–904. doi: 10.1109/TVLSI.2014.2330742
    [26]
    ZHANG Rongsheng, XIAO Liyi, CAO Xuebing, et al. A fast scrubbing method based on triple modular redundancy for SRAM-based FPGAs[C]. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 2018: 1–3.
    [27]
    JOHNSON J M. Synchronization voter insertion algorithms for FPGA designs using triple modular redundancy[D]. [Master dissertation], Brigham Young University, 2010.
    [28]
    JOHNSON J M and WIRTHLIN M J. Voter insertion algorithms for FPGA designs using triple modular redundancy[C]. Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays, USA, 2010: 249–258.
    [29]
    KHATRI A R, HAYEK A, and BÖRCSÖK J. RASP-TMR: An automatic and fast synthesizable Verilog code generator tool for the implementation and evaluation of TMR approach[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(8): 590–597. doi: 10.14569/IJACSA.2018.090875
    [30]
    KHATRI A R. Overview of fault tolerance techniques and the proposed TMR generator tool for FPGA designs[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(4): 749–753. doi: 10.14569/IJACSA.2020.0110497
    [31]
    KULIS S. Single event effects mitigation with TMRG tool[J]. Journal of Instrumentation, 2017, 12: C01082. doi: 10.1088/1748-0221/12/01/C01082
    [32]
    CERN. Triple Modular Redundancy Generator (TMRG)[EB/OL]. https://tmrg.web.cern.ch/tmrg/tmrg.pdf, 2020.
    [33]
    KULIS S. Single event upsets mitigation techniques[EB/OL]. https://indico.cern.ch/event/465343/attachments/1256299/1854682/tmrg_skulis_ep_ese.pdf, 2016.
    [34]
    Xilinx. Xilinx TMRTool Industry’s first triple modular redundancy development tool for re-configurable FPGAs[EB/OL]. https://www.xilinx.com/publications/prod_mktg/TRMTool-2015.pdf, 2015.
    [35]
    CARMICHAEL C. Triple module redundancy design techniques for Virtex FPGAs[EB/OL]. Xilinx Application Note XAPP197, https://china.xilinx.com/content/dam/xilinx/support/documents/application_notes/xapp197.pdf, 2001.
    [36]
    Xilinx. Xilinx TMRTool User Guide: TMRTool software Version 13.2[EB/OL]. https://www.xilinx.com/content/dam/xilinx/support/documents/user_guides/ug156-tmrtool.pdf, 2017.
    [37]
    WIRTHLIN M. The benefits of feedback TMR for SEU tolerance of SRAM FPGA designs[EB/OL]. https://indico.esa.int/event/130/contributions/723/attachments/781/958/ESA_SEFUW_TMR_March_2016-3.pdf, 2016.
    [38]
    ANWER J, PLATZNER M, and MEISNER S. FPGA redundancy configurations: An automated design space exploration[C]. 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, USA, 2014: 275–280.
    [39]
    DANG Wansheng. FPGA radiation effects mitigation technology on logic synthesis[EB/OL]. 2020.
    [40]
    GRAPHICS M. Precision Hi-Rel synthesis software[EB/OL]. https://eda.sw.siemens.com/en-US/ic/precision/hi-rel/, 2018.
    [41]
    [42]
    LEE G, AGIAKATSIKAS D, WU Tong, et al. TLegUp: A TMR code generation tool for SRAM-based FPGA applications using HLS[C]. 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, USA, 2017: 129–132.
    [43]
    BERNARDI M, CETIN E, and DIESSEL O. Correct high level synthesis of triple modular redundant user circuits for FPGAs[R]. UNSW-CSE-TR-201804, 2018.
    [44]
    AGIAKATSIKAS D. High-level synthesis of triple modular redundant FPGA circuits with energy efficient error recovery mechanisms[D]. [Ph. D. dissertation], University of New South Wales, 2019.
    [45]
    ZHU Zhiqi, TAHER F N, and SCHAFER B C. Exploring design trade-offs in fault-tolerant behavioral hardware accelerators[C]. Proceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, USA, 2019: 291–294.
    [46]
    PARVIS M and AGNELLO M. High-energy physics fault tolerance metrics and testing methodologies for SRAM-based FPGAs[D]. [Master dissertation], Politecnico di Torino, 2018.
    [47]
    Xilinx. Microblaze triple modular redundancy(TMR) subsystem v1.0: Product guide[EB/OL]. https://www.xilinx.com/support/documentation/ip_documentation/tmr/v1_0/pg268-tmr.pdf, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (2085) PDF downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return