Citation: | ZHAO Qianjin, PING Xinrui, SU Shuzhi, XIE Jun. Feature Fusion Method Based on Label-sensitive Multi-set Orthogonal Correlation[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3458-3464. doi: 10.11999/JEIT210323 |
[1] |
刘政怡, 段群涛, 石松, 等. 基于多模态特征融合监督的RGB-D图像显著性检测[J]. 电子与信息学报, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
|
[2] |
YANG Xinghao, LIU Weifeng, LIU Wei, et al. A survey on canonical correlation analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2349–2368. doi: 10.1109/TKDE.2019.2958342
|
[3] |
WANG Haoting, SMALLWOOD J, MOURAO-MIRANDA J, et al. Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists[J]. NeuroImage, 2020, 216: 116745. doi: 10.1016/j.neuroimage.2020.116745
|
[4] |
ZHENG Wenming. Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis[J]. IEEE Transactions on Cognitive and Developmental Systems, 2017, 9(3): 281–290. doi: 10.1109/TCDS.2016.2587290
|
[5] |
JIANG Qingchao, DING S X, WANG Yang, et al. Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8148–8157. doi: 10.1109/TIE.2017.2698422
|
[6] |
BHOWMIK B, TRIPURA T, HAZRA B, et al. Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection[J]. Journal of Sound and Vibration, 2020, 468: 115101. doi: 10.1016/j.jsv.2019.115101
|
[7] |
BAO Zhigang, HU Jiang, PAN Guangming, et al. Canonical correlation coefficients of high-dimensional Gaussian vectors: Finite rank case[J]. The Annals of Statistics, 2019, 47(1): 612–640. doi: 10.1214/18-AOS1704
|
[8] |
SAMAT A, PERSELLO C, GAMBA P, et al. Supervised and semi-supervised multi-view canonical correlation analysis ensemble for heterogeneous domain adaptation in remote sensing image classification[J]. Remote Sensing, 2017, 9(4): 337. doi: 10.3390/rs9040337
|
[9] |
GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
|
[10] |
LAI P L and FYFE C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems, 2000, 10(5): 365–377. doi: 10.1142/S012906570000034X
|
[11] |
PATEL A M, LI J K J, FINEGAN B, et al. Aortic pressure estimation using blind identification approach on single input multiple output nonlinear Wiener systems[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(6): 1193–1200. doi: 10.1109/TBME.2017.2688425
|
[12] |
SHAO Jie, WANG Leiquan, ZHAO Zhicheng, et al. Deep canonical correlation analysis with progressive and hypergraph learning for cross-modal retrieval[J]. Neurocomputing, 2016, 214: 618–628. doi: 10.1016/j.neucom.2016.06.047
|
[13] |
RU Lixiang, WU Chen, DU Bo, et al. Deep canonical correlation analysis network for scene change detection of multi-temporal VHR imagery[C]. The 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Shanghai, China, 2019: 1–4.
|
[14] |
CAI D, HE X, HAN J, et al. Orthogonal Laplacianfaces for face recognition[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3608–3614. doi: 10.1109/TIP.2006.881945
|
[15] |
WANG Li, ZHANG Leihong, BAI Zhaojun, et al. Orthogonal canonical correlation analysis and applications[J]. Optimization Methods and Software, 2020, 35(4): 787–807. doi: 10.1080/10556788.2019.1700257
|
[16] |
NIELSEN A A. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data[J]. IEEE Transactions on Image Processing, 2002, 11(3): 293–305. doi: 10.1109/83.988962
|
[17] |
GAO Lei, ZHANG Rui, QI Lin, et al. The labeled multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Multimedia, 2019, 21(2): 375–387. doi: 10.1109/TMM.2018.2859590
|
[18] |
CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475
|
[19] |
ZHANG Shichao, LI Xuelong, ZONG Ming, et al. Learning k for kNN classification[J]. ACM Transactions on Intelligent Systems and Technology, 2017, 8(3): 43. doi: 10.1145/2990508
|
[20] |
ZHANG Shichao, LI Xuelong, ZONG Ming, et al. Efficient kNN classification with different numbers of nearest neighbors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1774–1785. doi: 10.1109/TNNLS.2017.2673241
|
[21] |
JIANG Junjun, MA Jiayi, CHEN Chen, et al. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4581–4593. doi: 10.1109/TGRS.2018.2828029
|
[22] |
YUAN Yunhao and SUN Quansen. Graph regularized multiset canonical correlations with applications to joint feature extraction[J]. Pattern Recognition, 2014, 47(12): 3907–3919. doi: 10.1016/j.patcog.2014.06.016
|