Citation: | JI Weidong, NI Wanlu. A Dynamic Control Method of Population Size Based on Euclidean Distance[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2195-2206. doi: 10.11999/JEIT210322 |
[1] |
王蓉芳, 焦李成, 刘芳, 等. 自适应动态控制种群规模的自然计算方法[J]. 软件学报, 2012, 23(7): 1760–1772. doi: 10.3724/SP.J.1001.2012.04151
WANG Rongfang, JIAO Licheng, LIU Fang, et al. Nature computation with self-adaptive dynamic control strategy of population Size[J]. Journal of Software, 2012, 23(7): 1760–1772. doi: 10.3724/SP.J.1001.2012.04151
|
[2] |
康琦, 安静, 汪镭, 等. 自然计算的研究综述[J]. 电子学报, 2012, 40(3): 548–558. doi: 10.3969/j.issn.0372-2112.2012.03.023
KANG Qi, AN Jing, WANG Lei, et al. Nature-inspired computation: A survey[J]. Acta Electronica Sinica, 2012, 40(3): 548–558. doi: 10.3969/j.issn.0372-2112.2012.03.023
|
[3] |
SUN Shiyuan and LI Jianwei. A two-swarm cooperative particle swarms optimization[J]. Swarm and Evolutionary Computation, 2014, 15: 1–18. doi: 10.1016/j.swevo.2013.10.003
|
[4] |
夏学文, 刘经南, 高柯夫, 等. 具备反向学习和局部学习能力的粒子群算法[J]. 计算机学报, 2015, 38(7): 1397–1407. doi: 10.11897/SP.J.1016.2015.01397
XIA Xuewen, LIU Jingnan, GAO Kefu, et al. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Chinese Journal of Computers, 2015, 38(7): 1397–1407. doi: 10.11897/SP.J.1016.2015.01397
|
[5] |
邓先礼, 魏波, 曾辉, 等. 基于多种群的自适应迁移PSO算法[J]. 电子学报, 2018, 46(8): 1858–1865. doi: 10.3969/j.issn.0372-2112.2018.08.009
DENG Xianli, WEI Bo, ZENG Hui, et al. A multi-population based self-adaptive migration PSO[J]. Acta Electronica Sinica, 2018, 46(8): 1858–1865. doi: 10.3969/j.issn.0372-2112.2018.08.009
|
[6] |
张迅, 王平, 邢建春, 等. 基于高斯函数递减惯性权重的粒子群优化算法[J]. 计算机应用研究, 2012, 29(10): 3710–3712,3724. doi: 10.3969/j.issn.1001-3695.2012.10.027
ZHANG Xun, WANG Ping, XING Jianchun, et al. Particle swarm optimization algorithms with decreasing inertia weight based on Gaussian function[J]. Application Research of Computers, 2012, 29(10): 3710–3712,3724. doi: 10.3969/j.issn.1001-3695.2012.10.027
|
[7] |
XU Guiping, CUI Quanlong, SHI Xiaohu, et al. Particle swarm optimization based on dimensional learning strategy[J]. Swarm and Evolutionary Computation, 2019, 45: 33–51. doi: 10.1016/j.swevo.2018.12.009
|
[8] |
WEISE T, WU Yuezhong, CHIONG R, et al. Global versus local search: The impact of population sizes on evolutionary algorithm performance[J]. Journal of Global Optimization, 2016, 66(3): 511–534. doi: 10.1007/s10898-016-0417-5
|
[9] |
徐晓华, 陈崚, 陈宏建. 可变种群规模的遗传算法[J]. 系统仿真学报, 2006, 18(4): 870–872,876. doi: 10.3969/j.issn.1004-731X.2006.04.015
XU Xiaohua, CHEN Ling, and CHEN Hongjian. Genetic algorithm with variable population size[J]. Journal of System Simulation, 2006, 18(4): 870–872,876. doi: 10.3969/j.issn.1004-731X.2006.04.015
|
[10] |
AFFENZELLER M, WAGNER S, and WINKLER S. Self-adaptive population size adjustment for genetic algorithms[C]. The 11th International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, 2007: 820–828.
|
[11] |
WANG Hui, RAHNAMAYAN S, and WU Zhijian. Adaptive Differential Evolution with variable population size for solving high-dimensional problems[C]. The IEEE Congress of Evolutionary Computation (CEC), New Orleans, USA, 2011: 2626–2632.
|
[12] |
GUAN Yuyang, YANG Ling, and SHENG Weiguo. Population control in evolutionary algorithms: Review and comparison[C]. The 12th International Conference on Bio-inspired Computing: Theories and Applications, Harbin, China, 2017: 161–174.
|
[13] |
PATEL S P and UPADHYAY S H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis[J]. Expert Systems with Applications, 2020, 154: 113400. doi: 10.1016/j.eswa.2020.113400
|
[14] |
BOULEY S, VANWYNSBERGHE C, LE MAGUERESSE T, et al. Microphone array positioning technique with Euclidean distance geometry[J]. Applied Acoustics, 2020, 167: 107377. doi: 10.1016/j.apacoust.2020.107377
|
[15] |
ALGULIYEV R M, ALIGULIYEV R M, and SUKHOSTAT L V. Weighted consensus clustering and its application to Big data[J]. Expert Systems with Applications, 2020, 150: 113294. doi: 10.1016/j.eswa.2020.113294
|
[16] |
史哲文, 白雪石, 郭禾. 基于改进小生境粒子群算法的多模函数优化[J]. 计算机应用研究, 2012, 29(2): 465–468. doi: 10.3969/j.issn.1001-3695.2012.02.016
SHI Zhewen, BAI Xueshi, and GUO He. Multimodal function optimization based on modified niching particle swarm optimization[J]. Application Research of Computers, 2012, 29(2): 465–468. doi: 10.3969/j.issn.1001-3695.2012.02.016
|
[17] |
王通, 刘文芳, 刘春芳. 基于欧氏距离的黑洞寻优算法[J]. 沈阳工业大学学报, 2016, 38(2): 201–205. doi: 10.7688/j.issn.1000-1646.2016.02.15
WANG Tong, LIU Wenfang, and LIU Chunfang. Optimization algorithm of black-hole based on Euclidean distance[J]. Journal of Shenyang University of Technology, 2016, 38(2): 201–205. doi: 10.7688/j.issn.1000-1646.2016.02.15
|
[18] |
佘合一, 吴锡生. 基于欧氏距离与多种搜索策略的人工蜂群算法[J]. 传感器与微系统, 2018, 37(9): 132–135. doi: 10.13873/J.1000-9787(2018)09-0132-04
SHE Heyi and WU Xisheng. ABC algorithm based on Euclidean distance and multiple search strategies[J]. Transducer and Microsystem Technologies, 2018, 37(9): 132–135. doi: 10.13873/J.1000-9787(2018)09-0132-04
|
[19] |
吴辰文, 马宁, 蒋雨璠. 基于Jeffrey散度相似性度量的加权FCM聚类算法[J]. 激光与光电子学进展, 2021, 58(8): 0810006. doi: 10.3788/LOP202158.0810006
WU Chenwen, MA Ning, and JIANG Yufan. Weighted FCM clustering algorithm based on Jeffrey divergence similarity measure[J]. Laser &Optoelectronics Progress, 2021, 58(8): 0810006. doi: 10.3788/LOP202158.0810006
|
[20] |
束俊, 孟德宇, 徐宗本. 元自步学习[J]. 中国科学:信息科学, 2020, 50(6): 781–793. doi: 10.1360/SSI-2020-0005
SHU Jun, MENG Deyu, and XU Zongben. Meta self-paced learning[J]. Scientia Sinica Informationis, 2020, 50(6): 781–793. doi: 10.1360/SSI-2020-0005
|
[21] |
SRISTI P, LU W S, and ANTONIOU A. A new variable-step-size LMS algorithm and its application in subband adaptive filtering for echo cancellation[C]. The IEEE International Symposium on Circuits and Systems, Sydney, Australia, 2001: 721–724.
|
[22] |
吕春英, 敖伟, 张洪顺. 一种新的变步长LMS算法[J]. 通信技术, 2011, 44(3): 11–14. doi: 10.3969/j.issn.1002-0802.2011.03.005
LV Chunying, AO Wei, and ZHANG Hongshun. A new variable step-size LMS algorithm[J]. Communications Technology, 2011, 44(3): 11–14. doi: 10.3969/j.issn.1002-0802.2011.03.005
|
[23] |
张喜涛, 张安清. 基于Sigmoid函数的变步长LMS自适应滤波算法性能分析[J]. 舰船电子对抗, 2013, 36(6): 52–55,82. doi: 10.3969/j.issn.1673-9167.2013.06.013
ZHANG Xitao and ZHANG Anqing. Performance analysis of LMS adaptive filtering algorithm with variable step based on Sigmoid function[J]. Shipboard Electronic Countermeasure, 2013, 36(6): 52–55,82. doi: 10.3969/j.issn.1673-9167.2013.06.013
|
[24] |
付学志, 刘忠, 李朝旭. Sigmoid函数变步长LMS自适应算法的抗干扰性能改进[J]. 北京邮电大学学报, 2011, 34(6): 112–115,120. doi: 10.3969/j.issn.1007-5321.2011.06.026
FU Xuezhi, LIU Zhong, and LI Chaoxu. Anti-interference performance improvement for Sigmoid function variable step-size LMS adaptive algorithm[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(6): 112–115,120. doi: 10.3969/j.issn.1007-5321.2011.06.026
|
[25] |
徐洋, 徐松涛, 马健, 等. 基于Sigmoid二次型隶属度函数的改进LMS算法[J]. 中南大学学报:自然科学版, 2014, 45(10): 3470–3476.
XU Yang, XU Songtao, MA Jian, et al. Improved LMS algorithm based on Sigmoid quadratic membership function[J]. Journal of Central South University:Science and Technology, 2014, 45(10): 3470–3476.
|
[26] |
王平波, 马凯, 武彩. 基于正态分布曲线的分段式变步长LMS算法[J]. 国防科技大学学报, 2020, 42(5): 16–22. doi: 10.11887/j.cn.202005003
WANG Pingbo, MA Kai, and WU Cai. Segmented variable-step-size LMS algorithm based on normal distribution curve[J]. Journal of National University of Defense Technology, 2020, 42(5): 16–22. doi: 10.11887/j.cn.202005003
|
[27] |
TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 2005: 695–701.
|
[28] |
WANG Hui, WU Zhijian, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20): 4699–4714. doi: 10.1016/j.ins.2011.03.016
|
[29] |
罗强, 季伟东, 徐浩天, 等. 一种最优粒子逐维变异的粒子群优化算法[J]. 小型微型计算机系统, 2020, 41(2): 259–263. doi: 10.3969/j.issn.1000-1220.2020.02.006
LUO Qiang, JI Weidong, XU Haotian, et al. Particle swarm optimization with global best particle dimension-by-dimension mutation[J]. Journal of Chinese Computer Systems, 2020, 41(2): 259–263. doi: 10.3969/j.issn.1000-1220.2020.02.006
|
[30] |
RAHNAMAYAN S, JESUTHASAN J, BOURENNANI F, et al. Computing opposition by involving entire population[C]. IEEE Congress on Evolutionary Computation, Beijing, China, 2014: 1800–1807.
|
[31] |
XU Gang and YU Guosong. Reprint of: On convergence analysis of particle swarm optimization algorithm[J]. Journal of Computational and Applied Mathematics, 2018, 340: 709–717. doi: 10.1016/j.cam.2018.04.036
|
[32] |
骆剑平, 李霞, 陈泯融. 混合蛙跳算法的Markov模型及其收敛性分析[J]. 电子学报, 2010, 38(12): 2875–2880.
LUO Jianping, LI Xia, and CHEN Minrong. The Markov model of shuffled frog leaping algorithm and its convergence analysis[J]. Acta Electronica Sinica, 2010, 38(12): 2875–2880.
|
[33] |
潘峰, 周倩, 李位星, 等. 标准粒子群优化算法的马尔科夫链分析[J]. 自动化学报, 2013, 39(4): 381–389. doi: 10.3724/SP.J.1004.2013.00381
PAN Feng, ZHOU Qian, LI Weixing, et al. Analysis of standard particle swarm optimization algorithm based on Markov chain[J]. Acta Automatica Sinica, 2013, 39(4): 381–389. doi: 10.3724/SP.J.1004.2013.00381
|
[34] |
SOLIS F J and WETS R J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19–30. doi: 10.1287/moor.6.1.19
|
[35] |
季伟东, 孙小晴, 林平, 等. 基于非线性降维的自然计算方法[J]. 电子与信息学报, 2020, 42(8): 1982–1989. doi: 10.11999/JEIT190623
JI Weidong, SUN Xiaoqing, LIN Ping, et al. Natural computing method based on nonlinear dimension reduction[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1982–1989. doi: 10.11999/JEIT190623
|
[36] |
周新宇, 吴志健, 王晖, 等. 一种精英反向学习的粒子群优化算法[J]. 电子学报, 2013, 41(8): 1647–1652. doi: 10.3969/j.issn.0372-2112.2013.08.031
ZHOU Xinyu, WU Zhijian, WANG Hui, et al. Elite opposition-based particle swarm optimization[J]. Acta Electronica Sinica, 2013, 41(8): 1647–1652. doi: 10.3969/j.issn.0372-2112.2013.08.031
|
[37] |
ARABAS J, MICHALEWICZ Z, and MULAWKA J. GAVaPS-a genetic algorithm with varying population size[C]. The First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, Orlando, USA, 1994: 73–78.
|
[38] |
BÄCK T, EIBEN A E, and VAN DER VAART N A L. An emperical study on GAs "without parameters"[C]. The 6th International Conference on Parallel Problem Solving from Nature PPSN VI, Paris, France, 2000: 315–324.
|
[39] |
HOLDENER E A. The art of parameterless evolutionary algorithms[D]. [Ph. D. dissertation], Missouri University of Science and Technology, 2008.
|
[40] |
SMORODKINA E and TAURITZ D. Greedy population sizing for evolutionary algorithms[C]. IEEE Congress on Evolutionary Computation (CEC), Singapore, 2007: 2181–2187.
|
[41] |
BREST J and MAUČEC M S. Population size reduction for the differential evolution algorithm[J]. Applied Intelligence, 2008, 29(3): 228–247. doi: 10.1007/s10489-007-0091-x
|
[42] |
WANG Xu, ZHAO Shuguang, JIN Yanling, et al. Differential evolution algorithm based on self-adaptive adjustment mechanism[C]. The 25th Chinese Control and Decision Conference, Guiyang, China, 2013: 577–581.
|
[43] |
LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R]. Technical Report 201212, 2013.
|