Citation: | WU Zheng, CHEN Hongchang, ZHANG Jianpeng. Link Prediction in Knowledge Graphs Based on Hyperbolic Graph Attention Networks[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2184-2194. doi: 10.11999/JEIT210321 |
[1] |
王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法、实践与应用[M]. 北京: 电子工业出版社, 2019: 1–3.
WANG Haofen, QI Guilin, and CHEN Huajun. Knowledge Graph[M]. Beijing: Publishing House of Electronics History, 2019: 1–3.
|
[2] |
REINANDA R, MEIJ E, and DE RIJKE M. Knowledge graphs: An information retrieval perspective[J]. Foundations and Trends® in Information Retrieval, 2020, 14(4): 289–444. doi: 10.1561/1500000063
|
[3] |
张崇宇. 基于知识图谱的自动问答系统的应用研究与实现[D]. [硕士论文], 北京邮电大学, 2019.
ZHANG Chongyu. Application research and implementation of automatic question answering system based on knowledge graph[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
|
[4] |
秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学:信息科学, 2020, 50(7): 937–956. doi: 10.1360/SSI-2019-0274
QIN Chuan, ZHU Hengshu, ZHUANG Fuzhen, et al. A survey on knowledge graph-based recommender systems[J]. Scientia Sinica Informationis, 2020, 50(7): 937–956. doi: 10.1360/SSI-2019-0274
|
[5] |
BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: Going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18–42. doi: 10.1109/MSP.2017.2693418
|
[6] |
WANG Quan, MAO Zhendong, WANG Bin, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724–2743. doi: 10.1109/TKDE.2017.2754499
|
[7] |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating Embeddings for modeling multi-relational data[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, USA, 2013: 2787–2795.
|
[8] |
SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. RotatE: Knowledge graph embedding by relational rotation in complex space[EB/OL]. https://arxiv.org/abs/1902.10197, 2019.
|
[9] |
NICKEL M, TRESP V, and KRIEGEL H. A three-way model for collective learning on multi-relational data[C]. Proceedings of the 28th International Conference on Machine Learning (ICML), Bellevue, USA, 2011: 809–816.
|
[10] |
YANG Bishan, YIH W T, HE Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. https://arxiv.org/abs/1412.6575, 2015.
|
[11] |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]. Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML), New York, USA, 2016: 2071–2080.
|
[12] |
BALAZEVIC I, ALLEN C, and HOSPEDALES T. TuckER: Tensor factorization for knowledge graph completion[C]. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 5184–5194.
|
[13] |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[EB/OL]. https://arxiv.org/abs/1707.01476, 2018.
|
[14] |
NGUYEN D Q, NGUYEN D Q, NGUYEN T D, et al. A convolutional neural network-based model for knowledge base completion and its application to search personalization[J]. Semantic Web, 2019, 10(5): 947–960. doi: 10.3233/SW-180318
|
[15] |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]. 15th International Conference on The Semantic Web, Heraklion, Greece, 2018: 593–607.
|
[16] |
ZHANG Zhao, ZHUANG Fuzhen, ZHU Hengshu, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[C]. The AAAI Conference on Artificial Intelligence (AAAI), Palo Alto, USA, 2020: 9612–9619.
|
[17] |
WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386
|
[18] |
王强, 江昊, 羿舒文, 等. 复杂网络的双曲空间表征学习方法[J]. 软件学报, 2021, 32(1): 93–117. doi: 10.13328/j.cnki.jos.006092
WANG Qiang, JIANG Hao, YI Shuwen, et al. Hyperbolic representation learning for complex networks[J]. Journal of Software, 2021, 32(1): 93–117. doi: 10.13328/j.cnki.jos.006092
|
[19] |
ZHANG Chengkun and GAO Junbin. Hype-HAN: Hyperbolic hierarchical attention network for semantic embedding[C]. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 2020: 3990–3996.
|
[20] |
BALAŽEVIC I, ALLEN C, and HOSPEDALES T. Multi-relational poincaré graph embeddings[EB/OL]. https://arxiv.org/abs/1905.09791, 2019.
|
[21] |
CHAMI I, WOLF A, JUAN Dacheng, et al. Low-dimensional hyperbolic knowledge graph embeddings[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL), Seattle, USA, 2020: 6901–6914.
|
[22] |
BONNABEL S. Stochastic gradient descent on Riemannian manifolds[J]. IEEE Transactions on Automatic Control, 2013, 58(9): 2217–2229. doi: 10.1109/TAC.2013.2254619
|
[23] |
SAKAI H and IIDUKA H. Riemannian adaptive optimization algorithm and its application to natural language processing[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 1–12. doi: 10.1109/TCYB.2021.3049845.
|
[24] |
ADCOCK A B, SULLIVAN B D, and MAHONEY M W. Tree-like structure in large social and information networks[C]. IEEE 13th International Conference on Data Mining, Dallas, USA, 2013: 1–10.
|
[25] |
KRACKHARDT D. Computational Organization Theory[M]. London: Psychology Press, 1994: 89–111.
|