Advanced Search
Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
WU Huagan, ZHOU Jie, CHEN Shengyao, CHEN Mo, XU Quan. Asymmetric Memristor-induced Attractor Asymmetric Evolution and Its Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2101-2109. doi: 10.11999/JEIT210307
Citation: WU Huagan, ZHOU Jie, CHEN Shengyao, CHEN Mo, XU Quan. Asymmetric Memristor-induced Attractor Asymmetric Evolution and Its Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2101-2109. doi: 10.11999/JEIT210307

Asymmetric Memristor-induced Attractor Asymmetric Evolution and Its Mechanism

doi: 10.11999/JEIT210307
Funds:  The National Natural Science Foundations of China (61801054, 51607013), The Postgraduate Education Reform Projects of Jiangsu Province (KYCX20_2550)
  • Received Date: 2021-04-13
  • Rev Recd Date: 2021-06-30
  • Available Online: 2021-07-08
  • Publish Date: 2022-06-21
  • The pinched hysteresis loop is the key basis to judge whether a physical device or a mathematical model is a memristor, and its symmetry property is also one of the important characteristics of a memristor. In this paper, an active asymmetric memristive diode-bridge emulator is proposed, whose asymmetry can be controlled by changing the number of parallel diodes in the diode-bridge. Firstly, the fingerprint of this asymmetric memristor emulator is tested, and the effects of excitation frequency and symmetry control parameter on the asymmetry of the pinched hysteresis loop are discussed. Thereafter, by coupling the asymmetric memristor into a Sallen-Key high-pass filter, an inductor-free memristive Chua’s circuit is constructed. The corresponding dimensionless system is built, upon which the asymmetric evolution feature of system attractor is uncovered. Based on the equilibrium stability analysis, bifurcation analysis and multiple attractors distribution in state initial space, the mechanism of attractor asymmetric evolution is clarified. The results demonstrated that, affected by the asymmetric memristor, two unstable saddle-foci of the inductor-free memristive Chua’s circuit are out of balance, resulting in the generations of asymmetric coexistence bifurcation and multi-stable mode. Finally, the correctness of theoretical analysis and numerical simulation are verified by hardware circuit experiment.
  • loading
  • [1]
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [2]
    MINATI L, GAMBUZZA L V, THIO W J, et al. A chaotic circuit based on a physical memristor[J]. Chaos, Solitons & Fractals, 2020, 138: 109990. doi: 10.1016/j.chaos.2020.109990
    [3]
    XIA Xiaozhu, ZENG Yicheng, and LI Zhijun. Coexisting multiscroll hyperchaotic attractors generated from a novel memristive jerk system[J]. Pramana, 2018, 91(6): 82. doi: 10.1007/s12043-018-1657-3
    [4]
    DONG Yujiao, WANG Guangyi, CHEN Guanrong, et al. A bistable nonvolatile locally-active memristor and its complex dynamics[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105203. doi: 10.1016/j.cnsns.2020.105203
    [5]
    ASCOLI A, TETZLAFF R, CORINTO F, et al. PSpice switch-based versatile memristor model[C] 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 2013: 205–208. doi: 10.1109/ISCAS.2013.6571818.
    [6]
    BAO Bocheng, YU Jingjing, HU Fengwei, et al. Generalized memristor consisting of diode bridge with first order parallel RC filter[J]. International Journal of Bifurcation and Chaos, 2014, 24(11): 1450143. doi: 10.1142/S0218127414501430
    [7]
    DENG Yue and LI Yuxia. A memristive conservative chaotic circuit consisting of a memristor and a capacitor[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(1): 013120. doi: 10.1063/1.5128384
    [8]
    AN Hongyu, LI Jialing, LI Ying, et al. Three dimensional memristor-based neuromorphic computing system and its application to cloud robotics[J]. Computers & Electrical Engineering, 2017, 63: 99–113. doi: 10.1016/j.compeleceng.2017.06.023
    [9]
    王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [10]
    YAO Peng, WU Huaqiang, GAO Bin, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792): 641–646. doi: 10.1038/s41586-020-1942-4
    [11]
    董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868
    [12]
    闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178
    [13]
    SHI Qingyu, HUANG Xia, YUAN Fang, et al. Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation[J]. Chinese Physics B, 2021, 30(2): 020507. doi: 10.1088/1674-1056/abd74c
    [14]
    WANG Guangyi, YUAN Fang, CHEN Guanrong, et al. Coexisting multiple attractors and riddled basins of a memristive system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(1): 013125. doi: 10.1063/1.5004001
    [15]
    ZHANG Sen, ZHENG Jiahao, WANG Xiaoping, et al. Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network[J]. Nonlinear Dynamics, 2020, 102(4): 2821–2841. doi: 10.1007/s11071-020-06072-w
    [16]
    BAO Bocheng, WU Pingye, BAO Han, et al. Chaotic bursting in memristive diode bridge-coupled Sallen-Key lowpass filter[J]. Electronics Letters, 2017, 53(16): 1104–1105. doi: 10.1049/el.2017.1647
    [17]
    李芳苑, 陈墨, 武花干. 忆阻高通滤波电路准周期与混沌环面簇发振荡及慢通道效应[J]. 电子与信息学报, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373

    LI Fangyuan, CHEN Mo, and WU Huagan. Quasi-periodic, chaotic-torus bursting oscillations and slow passage effect in memristive high-pass filter circuit[J]. Journal of Electronics &Information Technology, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373
    [18]
    CHANG Hui, LI Yuxia, and CHEN Guanrong. A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(4): 043110. doi: 10.1063/1.5129557
    [19]
    CHEN Mo, REN Xue, WU Huagan, et al. Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(12): 1706–1716. doi: 10.1631/FITEE.1900360
    [20]
    WU Huagan, YE Yi, CHEN Mo, et al. Periodically switched memristor initial boosting behaviors in memristive hypogenetic jerk system[J]. IEEE Access, 2019, 7: 145022–145029. doi: 10.1109/ACCESS.2019.2945754
    [21]
    CHUA L. If it’s pinched it’s a memristor[J]. Semiconductor Science and Technology, 2014, 29(10): 104001. doi: 10.1088/0268-1242/29/10/104001
    [22]
    YE Yi, ZHOU Jie, XU Quan, et al. Parallel-type asymmetric memristive diode-bridge emulator and its induced asymmetric attractor[J]. IEEE Access, 2020, 8: 156299–156307. doi: 10.1109/ACCESS.2020.3018728
    [23]
    HU Weipeng, WANG Zhen, ZHAO Yunping, et al. Symmetry breaking of infinite-dimensional dynamic system[J]. Applied Mathematics Letters, 2020, 103: 106207. doi: 10.1016/j.aml.2019.106207
    [24]
    KENGNE L K, KENGNE J, PONE J R M, et al. Dynamics, control and symmetry breaking aspects of an infinite-equilibrium chaotic system[J]. International Journal of Dynamics and Control, 2020, 8(3): 741–758. doi: 10.1007/s40435-020-00613-2
    [25]
    XU Quan, SONG Zhe, QIAN Hui, et al. Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network[J]. The European Physical Journal Special Topics, 2018, 227(7): 777–786. doi: 10.1140/epjst/e2018-700122-3
    [26]
    RAJAGOPAL K, JAFARI S, PHAM V T, et al. Antimonotonicity, bifurcation and multistability in the vallis model for El Niño[J]. International Journal of Bifurcation and Chaos, 2019, 29(3): 1950032. doi: 10.1142/S0218127419500329
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (984) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return