Citation: | CHEN Yong, XIE Wenyang, LIU Huanlin, WANG Bo, HUANG Meiyong. Multi-feature Fusion Pedestrian Detection Combining Head and Overall Information[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1453-1460. doi: 10.11999/JEIT210268 |
[1] |
王进, 陈知良, 李航, 等. 一种基于增量式超网络的多标签分类方法[J]. 重庆邮电大学学报:自然科学版, 2019, 31(4): 538–549. doi: 10.3979/j.issn.1673-825X.2019.04.015
WANG Jin, CHEN Zhiliang, LI Hang, et al. Hierarchical multi-label classification using incremental hypernetwork[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(4): 538–549. doi: 10.3979/j.issn.1673-825X.2019.04.015
|
[2] |
孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277
MENG Lu and YANG Xu. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277
|
[3] |
LU Chengye, WU Sheng, JIANG Chunxiao, et al. Weak harmonic signal detection method in chaotic interference based on extended Kalman filter[J]. Digital Communications and Networks, 2019, 5(1): 51–55. doi: 10.1016/j.dcan.2018.10.004
|
[4] |
高新波, 路文, 查林, 等. 超高清视频画质提升技术及其芯片化方案[J]. 重庆邮电大学学报:自然科学版, 2020, 32(5): 681–697. doi: 10.3979/j.issn.1673-825X.2020.05.001
GAO Xinbo, LU Wen, ZHA Lin, et al. Quality elevation technique for UHD video and its VLSI solution[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(5): 681–697. doi: 10.3979/j.issn.1673-825X.2020.05.001
|
[5] |
张功国, 吴建, 易亿, 等. 基于集成卷积神经网络的交通标志识别[J]. 重庆邮电大学学报:自然科学版, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019
ZHANG Gongguo, WU Jian, YI Yi, et al. Traffic sign recognition based on ensemble convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019
|
[6] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[7] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
|
[8] |
李春伟, 于洪涛, 李邵梅, 等. 一种基于可变形部件模型的快速对象检测算法[J]. 电子与信息学报, 2016, 38(11): 2864–2870. doi: 10.11999/JEIT160080
LI Chunwei, YU Hongtao, LI Shaomei, et al. Rapid object detection algorithm based on deformable part models[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2864–2870. doi: 10.11999/JEIT160080
|
[9] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
[10] |
CAO Jiale, PANG Yanwei, HAN Jungong, et al. Taking a look at small-scale pedestrians and occluded pedestrians[J]. IEEE Transactions on Image Processing, 2019, 29: 3143–3152. doi: 10.1109/TIP.2019.2957927
|
[11] |
赵斌, 王春平, 付强. 显著性背景感知的多尺度红外行人检测方法[J]. 电子与信息学报, 2020, 42(10): 2524–2532. doi: 10.11999/JEIT190761
ZHAO Bin, WANG Chunping, and FU Qiang. Multi-scale pedestrian detection in infrared images with salient background-awareness[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2524–2532. doi: 10.11999/JEIT190761
|
[12] |
ZHANG Shifeng, WEN Longyin, XIAO Bian, et al. Occlusion-aware R-CNN: Detecting pedestrians in a crowd[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 637–653. doi: 10.1007/978-3-030-01219-9_39.
|
[13] |
DU Xianzhi, EL-KHAMY M, LEE J, et al. Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection[C]. 2017 IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, USA, 2017: 953–961. doi: 10.1109/WACV.2017.111.
|
[14] |
FEI Chi, LIU Bin, CHEN Zhu, et al. Learning pixel-level and instance-level context-aware features for pedestrian detection in crowds[J]. IEEE Access, 2019, 7: 94944–94953. doi: 10.1109/ACCESS.2019.2928879
|
[15] |
LIU Wei, LIAO Shengcai, REN Weiqiang, et al. High-level semantic feature detection: A new perspective for pedestrian detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5182–5191. doi: 10.1109/CVPR.2019.00533.
|
[16] |
LIU Songtao, HUANG Di, and WANG Yunhong. Adaptive NMS: Refining pedestrian detection in a crowd[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6452–6461. doi: 10.1109/CVPR.2019.00662.
|
[17] |
XU Ruiyue, CUAN Yepeng, and HUANG Yizhen. Multiple human detection and tracking based on head detection for real-time video surveillance[J]. Multimedia Tools and Applications, 2015, 74(3): 729–742. doi: 10.1007/s11042-014-2177-x
|
[18] |
LU Ruiqi, MA Huimin, and WANG Yu. Semantic head enhanced pedestrian detection in a crowd[J]. Neurocomputing, 2020, 400: 343–351. doi: 10.1016/j.neucom.2020.03.037
|
[19] |
SHAO Shuai, ZHAO Zijian, LI Boxun, et al. CrowdHuman: A benchmark for detecting human in a crowd[EB/OL]. https://arxiv.org/abs/1805.00123, 2020.
|
[20] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[21] |
LIN Chunze, LU Jiwen, WANG Gang, et al. Graininess-aware deep feature learning for robust pedestrian detection[J]. IEEE Transactions on Image Processing, 2020, 29: 3820–3834. doi: 10.1109/TIP.2020.2966371
|
[22] |
ZHANG Shanshan, BENENSON R, and SCHIELE B. CityPersons: A diverse dataset for pedestrian detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4457–4465. doi: 10.1109/CVPR.2017.474.
|
[23] |
DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. doi: 10.1109/TPAMI.2011.155
|
[24] |
ZHANG Yongming, ZHANG Shifeng, ZHUANG Chubin, et al. Feature enhancement for joint human and head detection[C]. The 14th Chinese Conference on Biometric Recognition, Zhuzhou, China, 2019: 511–518. doi: 10.1007/978-3-030-31456-9_56.
|
[25] |
LIU Wei, LIAO Shengcai, HU Weidong, et al. Learning efficient single-stage pedestrian detectors by asymptotic localization fitting[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 618–634. doi: 10.1007/978-3-030-01264-9_38.
|
[26] |
ZHANG Shanshan, YANG Jian, and SCHIELE B. Occluded pedestrian detection through guided attention in CNNs[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6995–7003. doi: 10.1109/CVPR.2018.00731.
|
[27] |
CAI Zhaowei, FAN Quanfu, FERIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 354–370. doi: 10.1007/978-3-319-46493-0_22.
|