Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
HE Lifang, DONG Jiangtao, ZHANG Gang. Design and Performance Analysis of Orthogonal Multi-User CD-DCSK Scheme[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1828-1838. doi: 10.11999/JEIT210263
Citation: HE Lifang, DONG Jiangtao, ZHANG Gang. Design and Performance Analysis of Orthogonal Multi-User CD-DCSK Scheme[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1828-1838. doi: 10.11999/JEIT210263

Design and Performance Analysis of Orthogonal Multi-User CD-DCSK Scheme

doi: 10.11999/JEIT210263
Funds:  The National Natural Science Foundation of China (61771085), The Research Project of Chongqing Educational Commission (KJ1600407, KJQN201900601)
  • Received Date: 2021-03-30
  • Accepted Date: 2021-11-11
  • Rev Recd Date: 2021-11-11
  • Available Online: 2021-12-22
  • Publish Date: 2022-05-25
  • To improve further the information transmission rate and Bit Error Rate (BER) performance of existing multi-user chaos keying systems, an Orthogonal Multi-User Correlation Delay Differential Chaos Shift Keying (OMU-CD-DCSK) system is proposed in this paper. The system is based on DCSK combined with Correlation Delay Shift Keying (CDSK), which can transmit N bit multi-user information in each time slot using orthogonal Walsh code sequence, and then increase further the transmission rate by quadrature modulation technique. At the receiver, a moving average filter is used to reduce the noise variance and improve the BER performance, followed by correlation demodulation to recover the multi-user information bits. The theoretical BER of the system under multipath Rayleigh fading channel is derived, and verified by Monte Carlo simulation experiments. Furthermore, the integrated utility of the system is defined for evaluating the integrated performance of the chaotic system. Compare with other chaotic keying systems, the integrated performance of OMU-CD-DCSK has obvious advantages. Therefore, it is of great value in application.
  • loading
  • [1]
    蒋国平, 杨华, 段俊毅. 混沌数字调制方案及性能分析[M]. 北京: 科学出版社, 2015: 2–4.

    JIANG Guoping, YANG Hua, and DUAN Junyi. Chaotic Digital Modulation Scheme and Performance Analysis[M]. Beijing: Science Press, 2015: 2–4.
    [2]
    CHENG Guixian, WANG Lin, CHEN Qiwang, et al. Design and performance analysis of generalised carrier index M-ary differential chaos shift keying modulation[J]. IET Communications, 2018, 12(11): 1324–1331. doi: 10.1049/iet-com.2017.0800
    [3]
    KADDOUM G, TRAN H V, KONG Long, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431–433. doi: 10.1109/tcomm.2016.2619707
    [4]
    代红英, 徐位凯. MC-DCSK中的子载波功率分配优化算法[J]. 重庆邮电大学学报:自然科学版, 2015, 27(2): 170–173. doi: 10.3979/j.issn.1673-825X.2015.02.005

    DAI Hongying and XU Weikai. Optimal sub-carriers power allocation in MC-DCSK communication system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2015, 27(2): 170–173. doi: 10.3979/j.issn.1673-825X.2015.02.005
    [5]
    LI Shuying, ZHAO Yaqin, and WU Zhilu. Design and analysis of an OFDM-based differential chaos shift keying communication system[J]. Journal of Communications, 2015, 10(3): 199–205. doi: 10.12720/jcm.10.3.199-205
    [6]
    LAU F C M and TSE C K. On optimal detection of noncoherent chaos-shift-keying signals in a noisy environment[J]. International Journal of Bifurcation and Chaos, 2003, 13(6): 1587–1597. doi: 10.1142/S0218127403007448
    [7]
    YANG Hua, TANG W K S, CHEN Guanrong, et al. Multi-carrier chaos shift keying: System design and performance analysis[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(8): 2182–2194. doi: 10.1109/TCSI.2017.2685344
    [8]
    杨华, 蒋国平, 段俊毅. 无信号内干扰的高效差分混沌键控通信方案[J]. 通信学报, 2015, 36(6): 88–93. doi: 10.11959/j.issn.1000-436x.2015150

    YANG Hua, JIANG Guoping, and DUAN Junyi. High efficiency differential chaos shift keying modulation scheme without intra-signal interference[J]. Journal on Communications, 2015, 36(6): 88–93. doi: 10.11959/j.issn.1000-436x.2015150
    [9]
    CHEN Pingping, WANG Lin, and LAU F C M. One analog STBC-DCSK transmission scheme not requiring channel state information[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(4): 1027–1037. doi: 10.1109/TCSI.2012.2209304
    [10]
    KADDOUM G and GAGNON F. Performance analysis of STBC-CSK communication system over slow fading channel[J]. Signal Processing, 2013, 93(7): 2055–2060. doi: 10.1016/j.sigpro.2012.12.020
    [11]
    HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108
    [12]
    TAM W M, LAU F C M, and TSE C K. Generalized correlation-delay-shift-keying scheme for noncoherent chaos-based communication systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2006, 53(3): 712–721. doi: 10.1109/TCSI.2005.858323
    [13]
    RUSHFORTH C. Transmitted-reference techniques for random or unknown channels[J]. IEEE Transactions on Information Theory, 1964, 10(1): 39–42. doi: 10.1109/TIT.1964.1053641
    [14]
    YANG Hua and JIANG Guoping. High-efficiency differential-chaos-shift-keying scheme for chaos-based noncoherent communication[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2012, 59(5): 312–316. doi: 10.1109/TCSII.2012.2190859
    [15]
    YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
    [16]
    XU W K, WANG L, and KOLUMBÁN G. A novel differential chaos shift keying modulation scheme[J]. International Journal of Bifurcation and Chaos, 2011, 21(3): 799–814. doi: 10.1142/S0218127411028829
    [17]
    贺利芳, 陈俊, 张天骐. 短参考多用户差分混沌移位键控通信系统性能分析[J]. 电子与信息学报, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117

    HE Lifang, CHEN Jun, and ZHANG Tianqi. Performance analysis of short reference multi-user differential chaos shift keying communication system[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1902–1909. doi: 10.11999/JEIT190117
    [18]
    吴雪霜, 贺利芳, 张鹏. 正交多用户降噪差分混沌键控通信系统[J]. 西安交通大学学报, 2020, 54(10): 108–115.

    WU Xueshuang, HE Lifang, and ZHANG Peng. Differential chaotic shift keying system with orthogonal multiuser noise reduction[J]. Journal of Xian Jiaotong University, 2020, 54(10): 108–115.
    [19]
    LAU F C M, CHEONG K Y, and TSE C K. Permutation-based DCSK and multiple-access DCSK systems[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003, 50(6): 733–742. doi: 10.1109/TCSI.2003.812616
    [20]
    张公泉, 李晓辉, 陈晓婷, 等. 短参多进制保密差分混沌键控系统[J]. 系统工程与电子技术, 2020, 42(12): 2899–2905. doi: 10.3969/j.issn.1001-506X.2020.12.28

    ZHANG Gongquan, LI Xiaohui, CHEN Xiaoting, et al. Short-reference M-ary security differential chaos shift keying system[J]. Systems Engineering and Electronics, 2020, 42(12): 2899–2905. doi: 10.3969/j.issn.1001-506X.2020.12.28
    [21]
    ZHANG Gang, ZHAO Changchang, and ZHANG Tianqi. Performance analysis of MISO-MU-OHE-DCSK system over Rayleigh fading channels[J]. AEUE - International Journal of Electronics and Communications, 2019, 115: 153048. doi: 10.1016/j.aeue.2019.153048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (561) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return