Advanced Search
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
He’an HUA, Yongchun FANG, Chen QIAN, Xuetao ZHANG. Reinforcement Learning Control Strategy of Quadrotor Unmanned Aerial Vehicles Based on Linear Filter[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3407-3417. doi: 10.11999/JEIT210251
Citation: He’an HUA, Yongchun FANG, Chen QIAN, Xuetao ZHANG. Reinforcement Learning Control Strategy of Quadrotor Unmanned Aerial Vehicles Based on Linear Filter[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3407-3417. doi: 10.11999/JEIT210251

Reinforcement Learning Control Strategy of Quadrotor Unmanned Aerial Vehicles Based on Linear Filter

doi: 10.11999/JEIT210251
Funds:  The National Natural Science Foundation of China (61873132, 61633012)
  • Received Date: 2021-03-26
  • Rev Recd Date: 2021-10-20
  • Available Online: 2021-10-27
  • Publish Date: 2021-12-21
  • In this paper, based on linear filter, a deep Reinforcement Learning (RL) strategy is proposed, then a novel intelligent control method is put forward for quadrotor Unmanned Aerial Vehicles (UAVs), which improves effectively the robustness against disturbance and unmodeled dynamics. First of all, based on linear reduced-order filtering technology, filter variables with fewer dimensions are designed as the input of the deep network, which reduces the exploration space of the strategy and improves the exploration efficiency. On this basis, to enhance strategy perception of steady-state errors, the filter variables and integration terms are combined to design the lumped error as the new network input, which improves the positioning accuracy of quadrotor UAVs. The novelty of this paper lies in that it is the first intelligent approach based on linear filtering technology, to eliminate successfully the influence of unknown disturbance and unmodeled dynamics of quadrotor UAVs, which improves the positioning accuracy. The results of comparative experiments show the effectiveness of the proposed method in terms of improving positioning accuracy and enhancing robustness.
  • loading
  • [1]
    张坤, 高晓光. 未知风场扰动下无人机三维航迹跟踪鲁棒最优控制[J]. 电子与信息学报, 2015, 37(12): 3009–3015.

    ZHANG Kun and GAO Xiaoguang. Robust optimal control for unmanned aerial vehicles’ three-dimensional trajectory tracking in wind disturbance[J]. Journal of Electronics &Information Technology, 2015, 37(12): 3009–3015.
    [2]
    宋大雷, 齐俊桐, 韩建达, 等. 旋翼飞行机器人系统建模与主动模型控制理论及实验研究[J]. 自动化学报, 2011, 37(4): 480–495. doi: 10.3724/SP.J.1004.2011.00480

    SONG Dalei, QI Juntong, HAN Jianda, et al. Model identification and active modeling control for rotor fly-robot: Theory and experiment[J]. Acta Automatica Sinica, 2011, 37(4): 480–495. doi: 10.3724/SP.J.1004.2011.00480
    [3]
    孟祥冬, 何玉庆, 韩建达. 接触作业型飞行机械臂系统的力/位置混合控制[J]. 机器人, 2020, 42(2): 167–178.

    MENG Xiangdong, HE Yuqing, and HAN Jianda. Hybrid force/position control of aerial manipulators in contact operation[J]. Robot, 2020, 42(2): 167–178.
    [4]
    王诗章, 鲜斌, 杨森. 无人机吊挂飞行系统的减摆控制设计[J]. 自动化学报, 2018, 44(10): 1771–1780.

    WANG Shizhang, XIAN Bin, and YANG Sen. Anti-swing controller design for an unmanned aerial vehicle with a slung-load[J]. Acta Automatica Sinica, 2018, 44(10): 1771–1780.
    [5]
    甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669–681.

    ZHEN Ziyang. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669–681.
    [6]
    赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601

    ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics and Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
    [7]
    李瑞涵, 王耀南, 谭建豪. Nesterov加速梯度无人机姿态融合算法[J]. 机器人, 2018, 40(6): 852–859.

    LI Ruihan, WANG Yaonan, and TAN Jianhao. Attitude fusion algorithm of UAV based on Nesterov accelerated gradient[J]. Robot, 2018, 40(6): 852–859.
    [8]
    高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877

    GAO Yang, LI Dongsheng, and CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
    [9]
    ZHENG Dongliang, WANG Hesheng, WANG Jingchuan, et al. Toward visibility guaranteed visual servoing control of quadrotor UAVs[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1087–1095. doi: 10.1109/TMECH.2019.2906430
    [10]
    ZHANG Xuetao, FANG Yongchun, ZHANG Xuebao, et al. A novel geometric hierarchical approach for dynamic visual servoing of quadrotors[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3840–3849. doi: 10.1109/TIE.2019.2917420
    [11]
    MAHONY R and HAMEL T. Image-based visual servo control of aerial robotic systems using linear image features[J]. IEEE Transactions on Robotics, 2005, 21(2): 227–239. doi: 10.1109/TRO.2004.835446
    [12]
    LIU Hao, ZHAO Wanbin, ZUO Zongyu, et al. Robust control for quadrotors with multiple time-varying uncertainties and delays[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1303–1312. doi: 10.1109/TIE.2016.2612618
    [13]
    HUA He’an, FANG Yongchun, ZHANG Xuetao, et al. Auto-tuning nonlinear PID-type controller for rotorcraft-based aggressive transportation[J]. Mechanical Systems and Signal Processing, 2020, 145: 106858. doi: 10.1016/j.ymssp.2020.106858
    [14]
    ZUO Zongyu and MALLIKARJUNAN S. L1 adaptive backstepping for robust trajectory tracking of UAVs[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 2944–2954. doi: 10.1109/TIE.2016.2632682
    [15]
    LV Zongyang, LI Shengming, WU Yuhu, et al. Adaptive control for a quadrotor transporting a cable-suspended payload with unknown mass in the presence of rotor downwash[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8505–8518. doi: 10.1109/TVT.2021.3096234
    [16]
    TIAN Bailing, YIN Liping, and WANG Hong. Finite-time reentry attitude control based on adaptive multivariable disturbance compensation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5889–5898. doi: 10.1109/TIE.2015.2442224
    [17]
    XIAN Bin and HAO Wei. Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo's stuck fault: Theory and experiments[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2158–2166. doi: 10.1109/TII.2018.2858143
    [18]
    SHI Haobin, LI Xuesi, HWANG K S, et al. Decoupled visual servoing with fuzzy Q-learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(1): 241–252. doi: 10.1109/TII.2016.2617464
    [19]
    HWANGBO J, SA I, SIEGWART R, et al. Control of a quadrotor with reinforcement learning[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2096–2103. doi: 10.1109/LRA.2017.2720851
    [20]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [21]
    SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014: 387–395.
    [22]
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]. Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016: 1–14.
    [23]
    RODRIGUEZ-RAMOS A, SAMPEDRO C, BAVLE H, et al. A deep reinforcement learning strategy for UAV autonomous landing on a moving platform[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1/2): 351–366.
    [24]
    WANG Yuanda, SUN Jia, HE Haibo, et al. Deterministic policy gradient with integral compensator for robust quadrotor control[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(10): 3713–3725. doi: 10.1109/TSMC.2018.2884725
    [25]
    WEI Qinglai, WANG Lingxiao, LIU Yu, et al. Optimal elevator group control via deep asynchronous actor-critic learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5245–5256. doi: 10.1109/TNNLS.2020.2965208
    [26]
    LEE T, LEOK M, and MCCLAMROCH N H. Geometric tracking control of a quadrotor UAV on SE(3)[C]. The 49th IEEE Conference on Decision and Control, Atlanta, USA, 2010: 5420–5425.
    [27]
    FURRER F, BURRI M, ACHTELIK M, et al. RotorS-a Modular Gazebo MAV Simulator Framework[M]. KOUBAA A. Robot Operating System (ROS): The Complete Reference (Volume 1). Cham: Springer, 2016: 595–625.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (1261) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return