Citation: | He’an HUA, Yongchun FANG, Chen QIAN, Xuetao ZHANG. Reinforcement Learning Control Strategy of Quadrotor Unmanned Aerial Vehicles Based on Linear Filter[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3407-3417. doi: 10.11999/JEIT210251 |
[1] |
张坤, 高晓光. 未知风场扰动下无人机三维航迹跟踪鲁棒最优控制[J]. 电子与信息学报, 2015, 37(12): 3009–3015.
ZHANG Kun and GAO Xiaoguang. Robust optimal control for unmanned aerial vehicles’ three-dimensional trajectory tracking in wind disturbance[J]. Journal of Electronics &Information Technology, 2015, 37(12): 3009–3015.
|
[2] |
宋大雷, 齐俊桐, 韩建达, 等. 旋翼飞行机器人系统建模与主动模型控制理论及实验研究[J]. 自动化学报, 2011, 37(4): 480–495. doi: 10.3724/SP.J.1004.2011.00480
SONG Dalei, QI Juntong, HAN Jianda, et al. Model identification and active modeling control for rotor fly-robot: Theory and experiment[J]. Acta Automatica Sinica, 2011, 37(4): 480–495. doi: 10.3724/SP.J.1004.2011.00480
|
[3] |
孟祥冬, 何玉庆, 韩建达. 接触作业型飞行机械臂系统的力/位置混合控制[J]. 机器人, 2020, 42(2): 167–178.
MENG Xiangdong, HE Yuqing, and HAN Jianda. Hybrid force/position control of aerial manipulators in contact operation[J]. Robot, 2020, 42(2): 167–178.
|
[4] |
王诗章, 鲜斌, 杨森. 无人机吊挂飞行系统的减摆控制设计[J]. 自动化学报, 2018, 44(10): 1771–1780.
WANG Shizhang, XIAN Bin, and YANG Sen. Anti-swing controller design for an unmanned aerial vehicle with a slung-load[J]. Acta Automatica Sinica, 2018, 44(10): 1771–1780.
|
[5] |
甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669–681.
ZHEN Ziyang. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669–681.
|
[6] |
赵太飞, 宫春杰, 张港, 等. 一种无人机集群安全高效的分区集结控制策略[J]. 电子与信息学报, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
ZHAO Taifei, GONG Chunjie, ZHANG Gang, et al. A safe and high efficiency control strategy of unmanned aerial vehicles partition rendezvous[J]. Journal of Electronics and Information Technology, 2021, 43(8): 2181–2188. doi: 10.11999/JEIT200601
|
[7] |
李瑞涵, 王耀南, 谭建豪. Nesterov加速梯度无人机姿态融合算法[J]. 机器人, 2018, 40(6): 852–859.
LI Ruihan, WANG Yaonan, and TAN Jianhao. Attitude fusion algorithm of UAV based on Nesterov accelerated gradient[J]. Robot, 2018, 40(6): 852–859.
|
[8] |
高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
GAO Yang, LI Dongsheng, and CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877
|
[9] |
ZHENG Dongliang, WANG Hesheng, WANG Jingchuan, et al. Toward visibility guaranteed visual servoing control of quadrotor UAVs[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1087–1095. doi: 10.1109/TMECH.2019.2906430
|
[10] |
ZHANG Xuetao, FANG Yongchun, ZHANG Xuebao, et al. A novel geometric hierarchical approach for dynamic visual servoing of quadrotors[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 3840–3849. doi: 10.1109/TIE.2019.2917420
|
[11] |
MAHONY R and HAMEL T. Image-based visual servo control of aerial robotic systems using linear image features[J]. IEEE Transactions on Robotics, 2005, 21(2): 227–239. doi: 10.1109/TRO.2004.835446
|
[12] |
LIU Hao, ZHAO Wanbin, ZUO Zongyu, et al. Robust control for quadrotors with multiple time-varying uncertainties and delays[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1303–1312. doi: 10.1109/TIE.2016.2612618
|
[13] |
HUA He’an, FANG Yongchun, ZHANG Xuetao, et al. Auto-tuning nonlinear PID-type controller for rotorcraft-based aggressive transportation[J]. Mechanical Systems and Signal Processing, 2020, 145: 106858. doi: 10.1016/j.ymssp.2020.106858
|
[14] |
ZUO Zongyu and MALLIKARJUNAN S. L1 adaptive backstepping for robust trajectory tracking of UAVs[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 2944–2954. doi: 10.1109/TIE.2016.2632682
|
[15] |
LV Zongyang, LI Shengming, WU Yuhu, et al. Adaptive control for a quadrotor transporting a cable-suspended payload with unknown mass in the presence of rotor downwash[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8505–8518. doi: 10.1109/TVT.2021.3096234
|
[16] |
TIAN Bailing, YIN Liping, and WANG Hong. Finite-time reentry attitude control based on adaptive multivariable disturbance compensation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5889–5898. doi: 10.1109/TIE.2015.2442224
|
[17] |
XIAN Bin and HAO Wei. Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo's stuck fault: Theory and experiments[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2158–2166. doi: 10.1109/TII.2018.2858143
|
[18] |
SHI Haobin, LI Xuesi, HWANG K S, et al. Decoupled visual servoing with fuzzy Q-learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(1): 241–252. doi: 10.1109/TII.2016.2617464
|
[19] |
HWANGBO J, SA I, SIEGWART R, et al. Control of a quadrotor with reinforcement learning[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2096–2103. doi: 10.1109/LRA.2017.2720851
|
[20] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
|
[21] |
SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014: 387–395.
|
[22] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]. Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016: 1–14.
|
[23] |
RODRIGUEZ-RAMOS A, SAMPEDRO C, BAVLE H, et al. A deep reinforcement learning strategy for UAV autonomous landing on a moving platform[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1/2): 351–366.
|
[24] |
WANG Yuanda, SUN Jia, HE Haibo, et al. Deterministic policy gradient with integral compensator for robust quadrotor control[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(10): 3713–3725. doi: 10.1109/TSMC.2018.2884725
|
[25] |
WEI Qinglai, WANG Lingxiao, LIU Yu, et al. Optimal elevator group control via deep asynchronous actor-critic learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5245–5256. doi: 10.1109/TNNLS.2020.2965208
|
[26] |
LEE T, LEOK M, and MCCLAMROCH N H. Geometric tracking control of a quadrotor UAV on SE(3)[C]. The 49th IEEE Conference on Decision and Control, Atlanta, USA, 2010: 5420–5425.
|
[27] |
FURRER F, BURRI M, ACHTELIK M, et al. RotorS-a Modular Gazebo MAV Simulator Framework[M]. KOUBAA A. Robot Operating System (ROS): The Complete Reference (Volume 1). Cham: Springer, 2016: 595–625.
|