Citation: | YANG Zhen, DI Shuanhu, ZHAO Yuqian, LIAO Miao, ZENG Yezhan. Automatic Liver Tumor Segmentation Based on Cascaded Dense-UNet and Graph Cuts[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1683-1693. doi: 10.11999/JEIT210247 |
[1] |
CAO Wei, CHEN Hongda, YU Yiwei, et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020[J]. Chinese Medical Journal, 2021, 134(7): 783–791. doi: 10.1097/CM9.0000000000001474
|
[2] |
LI Yang, ZHAO Yuqian, ZHANG Fan, et al. Liver segmentation from abdominal CT volumes based on level set and sparse shape composition[J]. Computer Methods and Programs in Biomedicine, 2020, 195: 105533. doi: 10.1016/j.cmpb.2020.105533
|
[3] |
ALIRR O I. Deep learning and level set approach for liver and tumor segmentation from CT scans[J]. Journal of Applied Clinical Medical Physics, 2020, 21(10): 200–209. doi: 10.1002/acm2.13003
|
[4] |
SIRIAPISITH T, KUSAKUNNIRAN W, and HADDAWY P. Pyramid graph cut: Integrating intensity and gradient information for grayscale medical image segmentation[J]. Computers in Biology and Medicine, 2020, 126: 103997. doi: 10.1016/j.compbiomed.2020.103997
|
[5] |
KADOURY S, VORONTSOV E, and TANG An. Metastatic liver tumour segmentation from discriminant Grassmannian manifolds[J]. Physics in Medicine & Biology, 2015, 60(16): 6459–6478. doi: 10.1088/0031-9155/60/16/6459
|
[6] |
FORUZAN A H and CHEN Yenwei. Improved segmentation of low-contrast lesions using sigmoid edge model[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(7): 1267–1283. doi: 10.1007/s11548-015-1323-x
|
[7] |
LIU Liangliang, WU Fangxiang, WANG Yuping, et al. Multi-receptive-field CNN for semantic segmentation of medical images[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(11): 3215–3225. doi: 10.1109/jbhi.2020.3016306
|
[8] |
ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203–211. doi: 10.1038/s41592-020-01008-z
|
[9] |
LI Xiaomeng, CHEN Hao, QI Xiaojuan, et al. H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663–2674. doi: 10.1109/tmi.2018.2845918
|
[10] |
JIANG Huiyan, SHI Tianyu, BAI Zhiqi, et al. AHCNet: An application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes[J]. IEEE Access, 2019, 7: 24898–24909. doi: 10.1109/access.2019.2899608
|
[11] |
LI Guoqing, ZHANG Meng, LI Jiaojie, et al. Efficient densely connected convolutional neural networks[J]. Pattern Recognition, 2021, 109: 107610. doi: 10.1016/j.patcog.2020.107610
|
[12] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[13] |
LIAO Miao, ZHAO Yuqian, LIU Xiyao, et al. Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching[J]. Computer Methods and Programs in Biomedicine, 2017, 143: 1–12. doi: 10.1016/j.cmpb.2017.02.015
|
[14] |
BILIC P, CHRIST P F, VORONTSOV E, et al. The Liver Tumor Segmentation benchmark (LiTS)[EB/OL]. https://arxiv.org/abs/1901.04056, 2019.
|
[15] |
SOLER L, HOSTETTLER A, AGNUS V, et al. 3D image reconstruction for comparison of algorithm database: A patient-specific anatomical and medical image database[EB/OL]. https://www.ircad.fr/research/3dircadb/, 2019.
|
[16] |
SUN Changjian, GUO Shuxu, ZHANG Huimao, et al. Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs[J]. Artificial Intelligence in Medicine, 2017, 83: 58–66. doi: 10.1016/j.artmed.2017.03.008
|
[17] |
CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 801–818. doi: 10.1007/978-3-030-01234-2_49.
|
[18] |
HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1055–1059. doi: 10.1109/ICASSP40776.2020.9053405.
|
[19] |
CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL].https://arxiv.org/abs/2102.04306, 2021.
|