Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
LIAO Yong, CHEN Ying. Ultra-Reliable and Robust Channel Estimation Using Basis Expansion Model-Based UKF-RTSS Scheme for V2V Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1792-1799. doi: 10.11999/JEIT210239
Citation: LIAO Yong, CHEN Ying. Ultra-Reliable and Robust Channel Estimation Using Basis Expansion Model-Based UKF-RTSS Scheme for V2V Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1792-1799. doi: 10.11999/JEIT210239

Ultra-Reliable and Robust Channel Estimation Using Basis Expansion Model-Based UKF-RTSS Scheme for V2V Systems

doi: 10.11999/JEIT210239
Funds:  The National Natural Science Foundation of China (61501066), The Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0017)
  • Received Date: 2021-03-23
  • Accepted Date: 2021-11-05
  • Rev Recd Date: 2021-05-17
  • Available Online: 2021-11-13
  • Publish Date: 2022-05-25
  • The Internet of vehicles application scenarios put forward higher requirements for wireless communication in terms of bandwidth, delay, and reliability, especially in the Vehicle to Vehicle (V2V) communication scenario. For the technical challenges of channel estimation caused by time/frequency domain selective fading (dual selection fading) and non-stationary characteristics in the V2V high-speed mobile scenario, this paper proposes a channel estimation method of BEM (Basis Expansion Model)-based UKF-RTSS (Unscented Kalman Filter-Rauch-Tung-Striebel Smoother). The BEM model is used to fit the time-varying channel, and the estimation of the channel parameters is converted into the estimation of the basis function coefficients; The unscented Kalman filter (UKF) algorithm is used to estimate jointly the channel impulse response and the time-varying time-domain autocorrelation coefficient at the data, tracking the fast time-varying channel response. In order to improve further the accuracy of channel estimation, RTSS is introduced to perform channel estimation and interpolation on the backward channel state information, and it forms a joint estimator with a "filtering and smoothing" structure with UKF. System simulation analysis shows that under different speed and time-varying conditions, the BEM-based UKF-RTSS channel estimation method has higher channel estimation accuracy and robustness than other classic methods, and is especially suitable for wireless communication in the Internet of vehicles scenarios.
  • loading
  • [1]
    ABBOUD K, OMAR H A, and ZHUANG Weihua. Interworking of DSRC and cellular network technologies for V2X communications: A survey[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9457–9470. doi: 10.1109/TVT.2016.2591558
    [2]
    ANWAR W, FRANCHI N, and FETTWEIS G. Physical layer evaluation of V2X communications technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11bd, and IEEE 802.11p[C]. 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, USA, 2019: 1–7. doi: 10.1109/VTCFall.2019.8891313.
    [3]
    CHEN Shanzhi, HU Jinling, SHI Yan, et al. LTE-V: A TD-LTE-based V2X solution for future vehicular network[J]. IEEE Internet of Things Journal, 2016, 3(6): 997–1005. doi: 10.1109/JIOT.2016.2611605
    [4]
    CHEN Shanzhi, HU Jinling, SHI Yan, et al. A Vision of C-V2X: Technologies, field testing, and challenges with Chinese development[J]. IEEE Internet of Things Journal, 2020, 7(5): 3872–3881. doi: 10.1109/JIOT.2020.2974823
    [5]
    CHEN Shanzhi, HU Jinling, SHI Yan, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70–76. doi: 10.1109/MCOMSTD.2017.1700015
    [6]
    陈维, 李源, 刘玮. 车联网产业进展及关键技术分析[J]. 中兴通讯技术, 2020, 26(1): 5–11. doi: 10.12142/ZTETJ.202001003

    CHEN Wei, LI Yuan, and LIU Wei. Industrial progress and key technologies of internet of vehicles[J]. ZTE Technology Journal, 2020, 26(1): 5–11. doi: 10.12142/ZTETJ.202001003
    [7]
    FARZAMNIA A, HLAING N W, HALDAR M K, et al. Channel estimation for sparse channel OFDM systems using least square and minimum mean square error techniques[C]. 2017 International Conference on Engineering and Technology (ICET), Antalya, USA, 2017: 1–5. doi: 10.1109/ICEngTechnol.2017.8308193.
    [8]
    ZARRINKOUB H. Understanding LTE with MATLAB: From Mathematical Modeling to Simulation and Prototyping[M]. Chichester: Wiley Publishing, 2014.
    [9]
    HRYCAK T, DAS S, MATZ G, et al. Practical estimation of rapidly varying channels for OFDM systems[J]. IEEE Transactions on Communications, 2011, 59(11): 3040–3048. doi: 10.1109/TCOMM.2011.082111.110075
    [10]
    ZAFARANI E, OMIDI M J, HEYDARYAN F, et al. Oversampled Legendre basis expansion model for doubly-selective channels[C]. 2011 19th Iranian Conference on Electrical Engineering, Tehran, Iran, 2011: 1–5.
    [11]
    BORAH D K and HART B T. Frequency-selective fading channel estimation with a polynomial time-varying channel model[J]. IEEE Transactions on Communications, 1999, 47(6): 862–873. doi: 10.1109/26.771343
    [12]
    TEO K A D and OHNO S. Optimal MMSE finite parameter model for doubly-selective channels[C]. GLOBECOM '05. IEEE Global Telecommunications Conference, 2005, St. Louis, USA, 2005: 3507. doi: 10.1109/GLOCOM.2005.1578424.
    [13]
    QU Huiyang, LIU Guanghui, WANG Yanyan, et al. A time-domain approach to channel estimation and equalization for the SC-FDM system[J]. IEEE Transactions on Broadcasting, 2019, 65(4): 713–726. doi: 10.1109/TBC.2019.2904849
    [14]
    廖勇, 蔡志镕. 基于基扩展模型的改进正则化正交匹配追踪V2X快时变SC-FDMA信道估计[J]. 通信学报, 2021, 42(4): 177–184.

    LIAO Yong and CAI Zhirong. Basis expansion model-based improved regularized orthogonal matching pursuit channel estimation for V2X fast time-varying SC-FDMA[J]. Journal on Communications, 2021, 42(4): 177–184.
    [15]
    LIAO Yong, SHEN Xuanfan, DAI Xuewu, et al. EKF-based joint channel estimation and decoding design for non-stationary OFDM channel[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254544.
    [16]
    PEDROSA P, CASTANHEIRA D, SILVA A, et al. Efficient joint channel equalization and tracking for V2X communications using SC-FDE schemes[J]. IEEE Access, 2020, 8: 55158–55169. doi: 10.1109/ACCESS.2020.2981717
    [17]
    BADDOUR K E and BEAULIEU N C. Autoregressive modeling for fading channel simulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(4): 1650–1662. doi: 10.1109/TWC.2005.850327
    [18]
    SARKKA S. Bayesian Filtering and Smoothing[M]. Cambridge: Cambridge University Press, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (764) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return