Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
CHEN Shanxue, LIU Ronghua. L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232
Citation: CHEN Shanxue, LIU Ronghua. L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232

L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization

doi: 10.11999/JEIT210232
Funds:  The National Natural Science Foundation of China (61271260), The Science and Technology Research Project of Chongqing Municipal Education Commission (KJ1400416)
  • Received Date: 2021-03-22
  • Rev Recd Date: 2021-08-13
  • Available Online: 2021-08-27
  • Publish Date: 2022-05-25
  • When the standard Nonnegative Matrix Factorization (NMF) is applied to hyperspectral unmixing, it is easy to be interfered by noise and outliers, and the unmixing effect is poor. In order to improve the factorized performance, the L21 norm is introduced into the standard NMF algorithm, and the model is improved to improve the robustness of the algorithm. Secondly, in order to improve the sparsity of the factorized abundance matrix, the double reweighted sparse constraint is introduced into the L21NMF model, so that one of the weights increases sparsity along the abundance vector corresponding to each pixel, and the other weight promotes the sparsity along the abundance vector corresponding to each endmember. Meanwhile, in order to utilize the global spatial distribution information of the pixels and observe the true distribution of materials in different images, the subspace structure regularization is introduced, and the L21 Nonnegative Matrix Factorization based on Subspace Structure Regularization (L21NMF-SSR) is proposed. The better performance and denoising ability of the proposed method are demonstrated by comparing with other classical methods on both synthetic and real datasets.
  • loading
  • [1]
    祝伟, 王雪, 黄岩, 等. 重加权稀疏和全变差约束下的深度非负矩阵分解高光谱解混[J]. 遥感学报, 2020, 24(4): 401–416.

    ZHU Wei, WANG Xue, HUANG Yan, et al. Reweighted sparsity regularized deep nonnegative matrix factorization with total variation toward hyperspectral unmixing[J]. Journal of Remote Sensing, 2020, 24(4): 401–416.
    [2]
    LE Dong, YUAN Yuan, and LUXS X. Spectral–spatial joint sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2391–2402. doi: 10.1109/TGRS.2020.3006109
    [3]
    陈晋, 马磊, 陈学泓, 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016, 20(5): 1102–1109.

    CHEN Jin, MA Lei, CHEN Xuehong, et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016, 20(5): 1102–1109.
    [4]
    YUAN Yuan, ZHANG Zihan, and WANG Qi. Improved collaborative non-negative matrix factorization and total variation for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 998–1010. doi: 10.1109/JSTARS.2020.2977399
    [5]
    BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354–379. doi: 10.1109/JSTARS.2012.2194696
    [6]
    LI Jun and BIOUCAS-DIAS J M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data[C]. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 250–253.
    [7]
    CHAN T H, CHI C Y, HUANG Yumin, et al. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4418–4432. doi: 10.1109/TSP.2009.2025802
    [8]
    BERMAN M, KIIVERI H, LAGERSTROM R, et al. ICE: A statistical approach to identifying endmembers in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2085–2095. doi: 10.1109/TGRS.2004.835299
    [9]
    袁博. 空间与谱间相关性分析的NMF高光谱解混[J]. 遥感学报, 2018, 22(2): 265–276.

    YUAN Bo. NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis[J]. Journal of Remote Sensing, 2018, 22(2): 265–276.
    [10]
    WANG Nan, DU Bo, ZHANG Liangpei, et al. An abundance characteristic-based independent component analysis for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 416–428. doi: 10.1109/TGRS.2014.2322862
    [11]
    HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4267–4279. doi: 10.1109/JSTARS.2016.2519498
    [12]
    徐光宪, 王延威, 马飞, 等. 基于最小体积稀疏正则的高光谱解混方法的研究[J]. 激光与光电子学进展, 2020, 57(24): 241010.

    XU Guangxian, WANG Yanwei, MA Fei, et al. Based on method of Hyperspectral unmixing minimum volume of sparse regularization[J]. Laser &Optoelectronics Progress, 2020, 57(24): 241010.
    [13]
    WANG Nan, DU Bo, and ZHANG Liangpei. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 554–569. doi: 10.1109/JSTARS.2013.2242255
    [14]
    QIAN Yuntao, JIA Sen, ZHOU Jun, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4282–4297. doi: 10.1109/TGRS.2011.2144605
    [15]
    CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905.
    [16]
    QU Kewen and BAO Wenxing. Multiple-Priors ensemble constrained nonnegative matrix factorization for spectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 963–975. doi: 10.1109/JSTARS.2020.2976602
    [17]
    LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2815–2826. doi: 10.1109/TGRS.2012.2213825
    [18]
    LU Xiaoqiang, DONG Le, and YUAN Yuan. Subspace clustering constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3007–3019. doi: 10.1109/TGRS.2019.2946751
    [19]
    ZHOU Lei, ZHANG Xueni, WANG Jianbo, et al. Subspace structure regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4257–4270. doi: 10.1109/JSTARS.2020.3011257
    [20]
    HUANG Risheng, LI Xiaorun, and ZHAO Liaoying. Spectral–spatial robust nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8235–8254. doi: 10.1109/TGRS.2019.2919166
    [21]
    周昌, 李向利, 李俏霖, 等. 基于余弦相似度的稀疏非负矩阵分解算法[J]. 计算机科学, 2020, 47(10): 108–113. doi: 10.11896/jsjkx.190700112

    ZHOU Chang, LI Xiangli, LI Qiaolin, et al. Sparse non-negative matrix factorization algorithm based on cosine similarity[J]. Computer Science, 2020, 47(10): 108–113. doi: 10.11896/jsjkx.190700112
    [22]
    LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184. doi: 10.1109/TPAMI.2012.88
    [23]
    CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970
    [24]
    HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3909–3921. doi: 10.1109/TGRS.2017.2683719
    [25]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views (1439) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return