Citation: | CHEN Shanxue, LIU Ronghua. L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232 |
[1] |
祝伟, 王雪, 黄岩, 等. 重加权稀疏和全变差约束下的深度非负矩阵分解高光谱解混[J]. 遥感学报, 2020, 24(4): 401–416.
ZHU Wei, WANG Xue, HUANG Yan, et al. Reweighted sparsity regularized deep nonnegative matrix factorization with total variation toward hyperspectral unmixing[J]. Journal of Remote Sensing, 2020, 24(4): 401–416.
|
[2] |
LE Dong, YUAN Yuan, and LUXS X. Spectral–spatial joint sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2391–2402. doi: 10.1109/TGRS.2020.3006109
|
[3] |
陈晋, 马磊, 陈学泓, 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016, 20(5): 1102–1109.
CHEN Jin, MA Lei, CHEN Xuehong, et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016, 20(5): 1102–1109.
|
[4] |
YUAN Yuan, ZHANG Zihan, and WANG Qi. Improved collaborative non-negative matrix factorization and total variation for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 998–1010. doi: 10.1109/JSTARS.2020.2977399
|
[5] |
BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354–379. doi: 10.1109/JSTARS.2012.2194696
|
[6] |
LI Jun and BIOUCAS-DIAS J M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data[C]. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 250–253.
|
[7] |
CHAN T H, CHI C Y, HUANG Yumin, et al. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4418–4432. doi: 10.1109/TSP.2009.2025802
|
[8] |
BERMAN M, KIIVERI H, LAGERSTROM R, et al. ICE: A statistical approach to identifying endmembers in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2085–2095. doi: 10.1109/TGRS.2004.835299
|
[9] |
袁博. 空间与谱间相关性分析的NMF高光谱解混[J]. 遥感学报, 2018, 22(2): 265–276.
YUAN Bo. NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis[J]. Journal of Remote Sensing, 2018, 22(2): 265–276.
|
[10] |
WANG Nan, DU Bo, ZHANG Liangpei, et al. An abundance characteristic-based independent component analysis for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 416–428. doi: 10.1109/TGRS.2014.2322862
|
[11] |
HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4267–4279. doi: 10.1109/JSTARS.2016.2519498
|
[12] |
徐光宪, 王延威, 马飞, 等. 基于最小体积稀疏正则的高光谱解混方法的研究[J]. 激光与光电子学进展, 2020, 57(24): 241010.
XU Guangxian, WANG Yanwei, MA Fei, et al. Based on method of Hyperspectral unmixing minimum volume of sparse regularization[J]. Laser &Optoelectronics Progress, 2020, 57(24): 241010.
|
[13] |
WANG Nan, DU Bo, and ZHANG Liangpei. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 554–569. doi: 10.1109/JSTARS.2013.2242255
|
[14] |
QIAN Yuntao, JIA Sen, ZHOU Jun, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4282–4297. doi: 10.1109/TGRS.2011.2144605
|
[15] |
CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905.
|
[16] |
QU Kewen and BAO Wenxing. Multiple-Priors ensemble constrained nonnegative matrix factorization for spectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 963–975. doi: 10.1109/JSTARS.2020.2976602
|
[17] |
LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2815–2826. doi: 10.1109/TGRS.2012.2213825
|
[18] |
LU Xiaoqiang, DONG Le, and YUAN Yuan. Subspace clustering constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3007–3019. doi: 10.1109/TGRS.2019.2946751
|
[19] |
ZHOU Lei, ZHANG Xueni, WANG Jianbo, et al. Subspace structure regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4257–4270. doi: 10.1109/JSTARS.2020.3011257
|
[20] |
HUANG Risheng, LI Xiaorun, and ZHAO Liaoying. Spectral–spatial robust nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8235–8254. doi: 10.1109/TGRS.2019.2919166
|
[21] |
周昌, 李向利, 李俏霖, 等. 基于余弦相似度的稀疏非负矩阵分解算法[J]. 计算机科学, 2020, 47(10): 108–113. doi: 10.11896/jsjkx.190700112
ZHOU Chang, LI Xiangli, LI Qiaolin, et al. Sparse non-negative matrix factorization algorithm based on cosine similarity[J]. Computer Science, 2020, 47(10): 108–113. doi: 10.11896/jsjkx.190700112
|
[22] |
LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184. doi: 10.1109/TPAMI.2012.88
|
[23] |
CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970
|
[24] |
HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3909–3921. doi: 10.1109/TGRS.2017.2683719
|
[25] |
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis tools for MATLAB, 2020.
|