Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
LI Ya, YANG Junjie, FENG Qi, QIN Xianqing. An Adaptive Asymmetric Parallel Graphic Equalizer Correction Method without Overlapping Frequency Bands[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1734-1742. doi: 10.11999/JEIT210220
Citation: LI Ya, YANG Junjie, FENG Qi, QIN Xianqing. An Adaptive Asymmetric Parallel Graphic Equalizer Correction Method without Overlapping Frequency Bands[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1734-1742. doi: 10.11999/JEIT210220

An Adaptive Asymmetric Parallel Graphic Equalizer Correction Method without Overlapping Frequency Bands

doi: 10.11999/JEIT210220
Funds:  The Science and Technology Program of Guangzhou (201904010302), The Scientific Research Project of Department of Education of Guangdong Province (2021ZDZX1079), The Doctoral Scientific Research Startup Fund of Guangdong Polytechnic Normal University (2021SDKYA056)
  • Received Date: 2021-03-15
  • Rev Recd Date: 2021-10-20
  • Available Online: 2021-11-04
  • Publish Date: 2022-05-25
  • In order to solve the problem of low accuracy and low efficiency of car loudspeakers sound field correction, a correction method of adaptive asymmetric parallel graphic equalizer without overlapping frequency bands is proposed in this paper. In the case of the dynamic change of the sound field in the car, the proposed method takes into account the effective equalization range and adaptive gains, rather than the fixed equalization range and given artificially gains in the classical methods. Through the experimental analysis of the measured data, the average number of equalization filters used by the proposed method is about 20% less than the classical methods, whose fitting target gains is more accurate, and the spectrum curve is flatter after correction.
  • loading
  • [1]
    VÄLIMÄKI V and REISS J D. All about audio equalization: Solutions and frontiers[J]. Applied Sciences, 2016, 6(5): 129. doi: 10.3390/app6050129
    [2]
    CECCHI S, CARINI A, and SPORS S. Room response equalization—a review[J]. Applied Sciences, 2018, 8(1): 16. doi: 10.3390/app8010016
    [3]
    PEPE G, GABRIELLI L, SQUARTINI S, et al. Evolutionary tuning of filters coefficients for binaural audio equalization[J]. Applied Acoustics, 2020, 163: 107204. doi: 10.1016/j.apacoust.2019.107204
    [4]
    DAGAR A, NITISH S S, and HEGDE R. Joint adaptive impulse response estimation and inverse filtering for enhancing in-car audio[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 416–420. doi: 10.1109/ICASSP.2018.8462329.
    [5]
    VAIRETTI G, DE SENA E, CATRYSSE M, et al. An automatic design procedure for low-order IIR parametric equalizers[J]. Journal of the Audio Engineering Society, 2018, 66(11): 935–952. doi: 10.17743/jaes.2018.0049
    [6]
    RÄMÖ J and VÄLIMÄKI V. Graphic delay equalizer[C]. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, England, 2019: 8018–8022. doi: 10.1109/icassp.2019.8682949.
    [7]
    PRINCE S and KUMAR K R S. A novel Nth-order IIR filter-based graphic equalizer optimized through genetic algorithm for computing filter order[J]. Soft Computing, 2019, 23(8): 2683–2691. doi: 10.1007/s00500-018-3640-9
    [8]
    PEPE G, GABRIELLI L, SQUARTINI S, et al. Gravitational search algorithm for IIR filter-based audio equalization[C]. 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Holland, 2021: 496–500. doi: 10.23919/Eusipco47968.2020.9287421.
    [9]
    PEPE G, GABRIELLI L, SQUARTINI S, et al. Designing audio equalization filters by deep neural networks[J]. Applied Sciences, 2020, 10(7): 2483. doi: 10.3390/app10072483
    [10]
    RÄMÖ J, LISKI J, and VÄLIMÄKI V. Third-octave and bark graphic-equalizer design with symmetric band filters[J]. Applied Sciences, 2020, 10(4): 1222. doi: 10.3390/app10041222
    [11]
    RÄMÖ J and VÄLIMÄKI V. Neural third-octave graphic equalizer[C]. Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, 2019: 2–6.
    [12]
    VÄLIMÄKI V and RÄMÖ J. Neurally controlled graphic equalizer[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(12): 2140–2149. doi: 10.1109/taslp.2019.2935809
    [13]
    RAMÍREZ M A M and REISS J D. End-to-end equalization with convolutional neural networks[C]. 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, 2018: 296–303.
    [14]
    RÄMÖ J and VÄLIMÄKI V. Optimizing a high-order graphic equalizer for audio processing[J]. IEEE Signal Processing Letters, 2014, 21(3): 301–305. doi: 10.1109/lsp.2014.2301557
    [15]
    LISKI J, RÄMÖ J, and VÄLIMÄKI V. Graphic equalizer design with symmetric biquad filters[C]. 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, USA, 2019: 55–59. doi: 10.1109/WASPAA.2019.8937168.
    [16]
    VÄLIMÄKI V and LISKI J. Accurate cascade graphic equalizer[J]. IEEE Signal Processing Letters, 2017, 24(2): 176–180. doi: 10.1109/lsp.2016.2645280
    [17]
    LISKI J and VÄLIMÄKI V. The quest for the best graphic equalizer[C]. Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, 2017: 95–102.
    [18]
    LISKI J, BANK B, SMITH J O, et al. Converting series biquad filters into delayed parallel form: Application to graphic equalizers[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3785–3795. doi: 10.1109/TSP.2019.2919419
    [19]
    TAO Hao, FANG Yong, LIU Huaping, et al. Optimization method for a high-precision graphic equalizer with lower order filter[C]. 2018 14th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2018: 22–26. doi: 10.1109/ICSP.2018.8652302.
    [20]
    BANK B. Converting infinite impulse response filters to parallel form [tips & tricks][J]. IEEE Signal Processing Magazine, 2018, 35(3): 124–130. doi: 10.1109/msp.2018.2805358
    [21]
    BANK B, BELLOCH J A, and VÄLIMÄKI V. Efficient design of a parallel graphic equalizer[J]. Journal of the Audio Engineering Society, 2017, 65(10): 817–825. doi: 10.17743/jaes.2017.0029
    [22]
    RÄMÖ J, VÄLIMÄKI V, and BANK B. High-precision parallel graphic equalizer[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(12): 1894–1904. doi: 10.1109/taslp.2014.2354241
    [23]
    CHEN Zhe, GENG Guosheng, YIN Fuliang, et al. A pre-distortion based design method for digital audio graphic equalizer[J]. Digital Signal Processing, 2014, 25: 296–302. doi: 10.1016/j.dsp.2013.11.007
    [24]
    ORFANIDIS S J. Introduction to Signal Processing[M]. Upper Saddle River: Prentice Hall, 1995.
    [25]
    KARJALAINEN M, PIIRILÄ E, JÄRVINEN A, et al. Comparison of loudspeaker equalization methods based on DSP techniques[J]. Journal of the Audio Engineering Society, 1999, 47(1/2): 14–31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (808) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return