Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
YANG Jie, JI Xinsheng, WANG Feihu, JIN Liang, YANG Jinmei. Performance Analysis of Physical Layer Security for IRS-aided MISO System with Randomly Distributed Eavesdropping Nodes[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1809-1818. doi: 10.11999/JEIT210209
Citation: YANG Jie, JI Xinsheng, WANG Feihu, JIN Liang, YANG Jinmei. Performance Analysis of Physical Layer Security for IRS-aided MISO System with Randomly Distributed Eavesdropping Nodes[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1809-1818. doi: 10.11999/JEIT210209

Performance Analysis of Physical Layer Security for IRS-aided MISO System with Randomly Distributed Eavesdropping Nodes

doi: 10.11999/JEIT210209
Funds:  The National Natural Science Foundation of China (61871404), The National Natural Science Foundation Innovative Groups Project of China (61521003), The Key Universities and Academic Disciplines Contruction Project
  • Received Date: 2021-03-11
  • Accepted Date: 2021-09-22
  • Rev Recd Date: 2021-09-22
  • Available Online: 2021-12-19
  • Publish Date: 2022-05-25
  • The security performance of Multiple-Input Single-Output (MISO) system with the aid of the Intelligent Reflecting Surface (IRS) is analyzed in this paper, where eavesdropping nodes are randomly distributed. The stochastic geometry theory is utilized to model the eavesdropping nodes as a homogeneous Poisson Point Process (PPP). With the transmit antenna selection strategy, the legitimate node selects the optimal link to transmit signal. And the phase shifts at the IRS are tuned to enhance the selected link quality. Then, considering the transmission secrecy outage probability as the performance metric, the closed expression of scheme is derived. Further, the impact of the parameters, such as the number of reflection units and transmitting antennas, on the outage probability is analyzed. Finally, the design strategy of parameters for maximizing the security performance is given. The simulation results verify the theoretical analysis and show that the proposed scheme can improve the security performance under low energy consumption.
  • loading
  • [1]
    YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6
    [2]
    于宝泉, 蔡跃明, 胡健伟. 认知无线电非正交多址接入随机网络物理层安全性能分析[J]. 电子与信息学报, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049

    YU Baoquan, CAI Yueming, and HU Jianwei. Performance analysis of physical layer security for cognitive radio non-orthogonal multiple access random network[J]. Journal of Electronics &Information Technology, 2020, 42(4): 950–956. doi: 10.11999/JEIT190049
    [3]
    雷维嘉, 林秀珍, 杨小燕, 等. 利用人工噪声提高合法接收者性能的物理层安全方案[J]. 电子与信息学报, 2016, 38(11): 2887–2892. doi: 10.11999/JEIT160054

    LEI Weijia, LIN Xiuzhen, YANG Xiaoyan, et al. Physical layer security scheme exploiting artificial noise to improve the performance of legitimate user[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2887–2892. doi: 10.11999/JEIT160054
    [4]
    HUANG Chongwen, HU Sha, ALEXANDROPOULOS G C, et al. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[J]. IEEE Wireless Communications, 2020, 27(5): 118–125. doi: 10.1109/MWC.001.1900534
    [5]
    WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [6]
    CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685
    [7]
    CHU Zheng, HAO Wanming, XIAO Pei, et al. Intelligent reflecting surface aided multi-antenna secure transmission[J]. IEEE Wireless Communications Letters, 2020, 9(1): 108–112. doi: 10.1109/LWC.2019.2943559
    [8]
    CHEN Jie, LIANG Yingchang, PEI Yiyang, et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security[J]. IEEE Access, 2019, 7: 82599–82612. doi: 10.1109/ACCESS.2019.2924034
    [9]
    YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043
    [10]
    YANG Liang, YANG Jinxia, XIE Wenwu, et al. Secrecy performance analysis of RIS-aided wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12296–12300. doi: 10.1109/TVT.2020.3007521
    [11]
    ZHANG Haiyang, HUANG Yongming, LI Chunguo, et al. Secure beamforming design for SWIPT in MISO broadcast channel with confidential messages and external eavesdroppers[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7807–7819. doi: 10.1109/TWC.2016.2607705
    [12]
    CHEN Gaojie, COON J P, and DI RENZO M. Secrecy outage analysis for downlink transmissions in the presence of randomly located eavesdroppers[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(5): 1195–1206. doi: 10.1109/TIFS.2017.2656462
    [13]
    GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629
    [14]
    GERACI G, SINGH S, ANDREWS J G, et al. Secrecy rates in broadcast channels with confidential messages and external eavesdroppers[J]. IEEE Transactions on Wireless Communications, 2014, 13(5): 2931–2943. doi: 10.1109/TWC.2014.041014.131101
    [15]
    XU Xiaoming, HE Biao, YANG Weiwei, et al. Secure transmission design for cognitive radio networks with Poisson distributed eavesdroppers[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(2): 373–387. doi: 10.1109/TIFS.2015.2500178
    [16]
    GRADSHTEIN I S and RYZHIK I M. Table of Integrals, Series, and Products[M]. 7th ed. Burlington: Academic Press, 2007: 337–338.
    [17]
    HAENGGI M. Stochastic Geometry for Wireless Networks[M]. Cambridge: Cambridge University Press, 2013: 99–102.
    [18]
    SADHWANI D, YADAV R N, and AGGARWAL S. Tighter bounds on the Gaussian Q function and its application in Nakagami-m fading channel[J]. IEEE Wireless Communications Letters, 2017, 6(5): 574–577. doi: 10.1109/LWC.2017.2717907
    [19]
    ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-Aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666
    [20]
    ZHANG Shuowen and ZHANG Rui. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823–1838. doi: 10.1109/JSAC.2020.3000814
    [21]
    CHONG E K P and ŻAK S H. An Introduction to Optimization[M]. 4th ed. New York: John Wiley & Sons, Inc. , 2013: 103–175.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (720) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return