Advanced Search
Volume 44 Issue 5
May  2022
Turn off MathJax
Article Contents
ZHANG Aihua, HE Boxin, ZHANG Aijun, LI Chunlei. Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1847-1855. doi: 10.11999/JEIT210204
Citation: ZHANG Aihua, HE Boxin, ZHANG Aijun, LI Chunlei. Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1847-1855. doi: 10.11999/JEIT210204

Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems

doi: 10.11999/JEIT210204
Funds:  The National Natural Science Foundation of China (61501530), The Foundation of Henan Educational Committee (21A510015), The Natural Science Foundation of Henan Province (222300420594)
  • Received Date: 2021-03-11
  • Accepted Date: 2021-12-14
  • Rev Recd Date: 2021-12-12
  • Available Online: 2022-01-11
  • Publish Date: 2022-05-25
  • In beam space millimeter-wave massive Multi-Input Multi-Output (MIMO) system, the power leakage problem will lead to energy loss. To mitigate this problem, Minimum Phase Error based Beam Rotating (MPE-BR) precoding scheme is proposed. Firstly, the phase shifter-based beam selection network is adopted, the beam selection set is constructed such that each Radio Frequency (RF) chain selects multiple beams collect the leaked power in system. Then, the beam rotation combination scheme based on minimum phase is proposed. Maximum gain beam is taken as reference. The phases of the beam selection set are determined by minimum phase error criterion such that the channel gains of the selected beams are approximatively aligned in the same direction for maximizing the Signal-to-Noise Ratio (SNR) of each user. System performance is improved. Furthermore, the proposed precoding algorithm is theoretically analyzed. The expression of the upper bound of spectrum efficiency and energy efficiency are given. The correctness of the theoretical derivation is verified in experiment, and the performance of proposed method is close to the ideal case of no-leakage power. The proposed scheme obtains better spectrum efficiency and energy efficiency performance than the existing algorithms.
  • loading
  • [1]
    SWINDLEHURST A L, AYANOGLU E, HEYDARI P, et al. Millimeter-wave massive MIMO: The next wireless revolution[J]. IEEE Communications Magazine, 2014, 52(9): 56–62. doi: 10.1109/MCOM.2014.6894453
    [2]
    张平, 陶运铮, 张治. 5G若干关键技术评述[J]. 通信学报, 2016, 37(7): 15–29. doi: 10.11959/j.issn.1000-436x.2016130

    ZHANG Ping, TAO Yunzheng, and ZHANG Zhi. Survey of several key technologies for 5G[J]. Journal on Communications, 2016, 37(7): 15–29. doi: 10.11959/j.issn.1000-436x.2016130
    [3]
    MORSALI A and CHAMPAGNE B. Achieving fully-digital performance by hybrid analog/digital beamforming in wide-band massive-MIMO systems[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 5125–5129.
    [4]
    解培中, 孙锐, 李汀. 基于连续干扰消除的毫米波MIMO系统混合预编码算法[J]. 电子与信息学报, 2019, 41(2): 409–416. doi: 10.11999/JEIT180379

    XIE Peizhong, SUN Rui, and LI Ting. Hybrid precoding algorithm based on successive interference cancellation for millimeter wave MIMO systems[J]. Journal of Electronics &Information Technology, 2019, 41(2): 409–416. doi: 10.11999/JEIT180379
    [5]
    BRADY J, BEHDAD N, and SAYEED A M. Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3814–3827. doi: 10.1109/TAP.2013.2254442
    [6]
    SHENG Hualian, CHEN Xihan, SHEN Kaiming, et al. Energy efficiency optimization for beamspace massive MIMO systems with low-resolution ADCs[C]. IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 2020: 1–7.
    [7]
    TANG Siyang, MA Zheng, XIAO Ming, et al. Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for mmWave communication using lens antenna array[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2118–2127. doi: 10.1109/JSAC.2020.3000885
    [8]
    GAO Xinyu, DAI Linglong, and SAYEED A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications[J]. IEEE Communications Magazine, 2018, 56(4): 211–217. doi: 10.1109/MCOM.2018.1600727
    [9]
    AMADORI P V and MASOUROS C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection[J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2223. doi: 10.1109/TCOMM.2015.2431266
    [10]
    HU Qiyu, LIU Yanzhen, CAI Yunlong, et al. Joint deep reinforcement learning and unfolding: beam selection and precoding for mmWave multiuser MIMO with lens arrays[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2289–2304. doi: 10.1109/JSAC.2021.3087233
    [11]
    SAYEED A and BRADY J. Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies[C]. 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013: 3679–3684.
    [12]
    GAO Xinyu, DAI Linglong, CHEN Zhijie, et al. Near-optimal beam selection for beamspace MmWave massive MIMO systems[J]. IEEE Communications Letters, 2016, 20(5): 1054–1057. doi: 10.1109/LCOMM.2016.2544937
    [13]
    GAO Yuan, KHALIEL M, ZHENG Feng, et al. Rotman lens based hybrid analog–digital beamforming in massive MIMO systems: Array architectures, beam selection algorithms and experiments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9134–9148. doi: 10.1109/TVT.2017.2714693
    [14]
    SARKER M A L, KADER M F, and HAN D S. Rate-loss mitigation for a millimeter-wave beamspace MIMO lens antenna array system using a hybrid beam selection scheme[J]. IEEE Systems Journal, 2020, 14(3): 3582–3585. doi: 10.1109/JSYST.2020.2964283
    [15]
    XIE Tian, DAI Linglong, NG D W K, et al. On the power leakage problem in millimeter-wave massive MIMO with lens antenna arrays[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4730–4744. doi: 10.1109/TSP.2019.2926019
    [16]
    EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846
    [17]
    ZENG Yong and ZHANG Rui. Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm[J]. IEEE Transactions on Communications, 2016, 64(4): 1557–1571. doi: 10.1109/TCOMM.2016.2533490
    [18]
    ZHANG Jianjun, HUANG Yongming, WANG Jiaheng, et al. Per-antenna constant envelope precoding and antenna subset selection: A geometric approach[J]. IEEE Transactions on Signal Processing, 2016, 64(23): 6089–6104. doi: 10.1109/TSP.2016.2582463
    [19]
    MÉNDEZ-RIAL R, RUSU C, GONZÁLEZ-PRELCIC N, et al. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?[J]. IEEE Access, 2016, 4: 247–267. doi: 10.1109/ACCESS.2015.2514261
    [20]
    AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1164–1179. doi: 10.1109/JSAC.2014.2328154
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (564) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return