Citation: | ZHAO Jihong, FENG Qing, WANG Zhi, HE Xiaoyuan. End to End Network Slicing Security Deployment Algorithm for Multi Service Scenarios[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1421-1428. doi: 10.11999/JEIT210195 |
[1] |
LI Taihui, ZHU Xiaorong, and LIU Xu. An end-to-end network slicing algorithm based on deep Q-Learning for 5G network[J]. IEEE Access, 2020, 8: 122229–122240. doi: 10.1109/ACCESS.2020.3006502
|
[2] |
陈山枝. 发展5G的分析与建议[J]. 电信科学, 2016, 32(7): 1–10.
CHEN Shanzhi. Analysis and suggestion of future 5G directions[J]. Telecommunications Science, 2016, 32(7): 1–10.
|
[3] |
FISCHER A and DE MEER H. Position paper: Secure virtual network embedding[J]. Praxis Der Informationsverarbeitung Und Kommunikation, 2011, 34(4): 190–193.
|
[4] |
ALJUHANI A and ALHARBI T. Virtualized network functions security attacks and vulnerabilities[C]. Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA, 2017: 1–4.
|
[5] |
ZHOU Jinhe, ZHAO Wenjun, and CHEN Shuo. Dynamic network slice scaling assisted by prediction in 5G network[J]. IEEE Access, 2020, 8: 133700–133712. doi: 10.1109/ACCESS.2020.3010623
|
[6] |
HARUTYUNYAN D, FEDRIZZI R, SHAHRIAR N, et al. Orchestrating end-to-end slices in 5G networks[C]. 2019 15th International Conference on Network and Service Management (CNSM), Halifax, Canada, 2019: 1–9.
|
[7] |
ZHAO Hailiang, DENG Shuiguang, LIU Zijie, et al. DPoS: Decentralized, privacy-preserving, and low-complexity online slicing for multi-tenant networks[C]. IEEE Transactions on Mobile Computing, Los Alamitos, USA, 2021.
|
[8] |
ZHAO Guanqun, QIN Shuang, and FENG Gang. Network slice selection in softwarization based mobile networks[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, The United Arab Emirates, 2018: 1–7.
|
[9] |
WANG Jingpei, SUN Bin, and NIU Xinxin. A trust model evaluation algorithm based on trusted modeling process[J]. Journal of Tsinghua University: Science and Technology, 2013, 3(12): 1699–1707.
|
[10] |
牛犇, 游伟, 汤红波. 基于安全信任的网络切片部署策略研究[J]. 计算机应用研究, 2019, 36(2): 574–579.
NIU Ben, YOU Wei, and TANG Hongbo. Research on network slicing deployment strategy based on security trust[J]. Application Research of Computers, 2019, 36(2): 574–579.
|
[11] |
GUAN Wanqing, WEN Xiangming, WANG Luhan, et al. A service-oriented deployment policy of end-to-end network slicing based on complex network theory[J]. IEEE Access, 2018, 6: 19691–19701. doi: 10.1109/ACCESS.2018.2822398
|
[12] |
管婉青. 基于多层复杂网络理论的网络切片协作管理研究[D]. [博士论文], 北京邮电大学, 2019
GUAN Wanqing. Research on cooperative management of network slicing based on multilayer complex network theory[D]. [Ph.D. dissertation], Beijing University of Posts and Telecommunications, 2019.
|
[13] |
张子超, 郝蔚琳, 张伊凡. 一种复杂网络中节点安全重要性排序的度量方法[J]. 信息安全学报, 2019, 4(1): 79–88.
ZHANG Zichao, HAO Weilin, and ZHANG Yifan. A measure approach for ranking the security importance of node security importance in complex network[J]. Journal of Cyber Security, 2019, 4(1): 79–88.
|
[14] |
FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35–41. doi: 10.2307/3033543
|
[15] |
荣莉莉, 郭天柱, 王建伟. 复杂网络节点中心性[J]. 上海理工大学学报, 2008, 30(3): 227–230, 236. doi: 10.3969/j.issn.1007-6735.2008.03.005
RONG Lili, GUO Tianzhu, and WANG Jianwei. Centralities of nodes in complex networks[J]. Journal of University of Shanghai for Science and Technology, 2008, 30(3): 227–230, 236. doi: 10.3969/j.issn.1007-6735.2008.03.005
|
[16] |
ABBASI A N and HE Mingyi. Convolutional neural network with PCA and batch normalization for hyperspectral image classification[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 959–962.
|
[17] |
AKRAM V K, ASCI M, and DAGDEVIREN O. Design and analysis of a breadth first search based connectivity robustness estimation approach in wireless sensor networks[C]. 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 2018: 1–6.
|
[18] |
HUANG Guanghao, LU Wei, XIE Jidong, et al. Improved route selection strategy based on K shortest path[C]. 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 2019: 1–4.
|
[19] |
ITU. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond[R]. ITU-R M.2083-0, 2015.
|
[20] |
HARRINGTON P. Machine Learning in Action[M]. Beijing: The People’s Posts and Telecommunications Press, 2013: 15–31.
|
[21] |
AARTS E and KORST J. Simulated Annealing and Boltzmann Machines[M]. New York: John Wiley &Sons, 1989: 173–198.
|
[22] |
YU Cunqian, HOU Weigang, GUAN Yingying, et al. Virtual 5G network embedding in a heterogeneous and multi-domain network infrastructure[J]. China Communications, 2016, 13(10): 29–43. doi: 10.1109/CC.2016.7732010
|
[23] |
MIJUMBI R, SERRAT J, GORRICHO J, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. The 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 2015: 1–9.
|
[24] |
YU Minlan, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17–29. doi: 10.1145/1355734.1355737
|