Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
JIANG Huawei, GUO Tao, YANG Zhen, ZHAO Like. Research on Material Emergency Scheduling Based on Discrete Whale Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1484-1494. doi: 10.11999/JEIT210173
Citation: JIANG Huawei, GUO Tao, YANG Zhen, ZHAO Like. Research on Material Emergency Scheduling Based on Discrete Whale Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1484-1494. doi: 10.11999/JEIT210173

Research on Material Emergency Scheduling Based on Discrete Whale Swarm Algorithm

doi: 10.11999/JEIT210173
Funds:  The National Natural Science Foundation of China (51677055), The Natural Science Foundation of Henan Province (162300410055), The Science and Technology Research Project of Henan Province (212102210499), The Key Scientific Research Projects of Colleges and Universities in Henan Province (22A520003)
  • Received Date: 2021-02-25
  • Accepted Date: 2021-11-05
  • Rev Recd Date: 2021-11-01
  • Available Online: 2021-11-13
  • Publish Date: 2022-04-18
  • To overcome the problem of easily falling into local extreme values of the whale swarm algorithm when it solves the material emergency scheduling problem with time windows in multiple distribution centers, an Improved Discrete Whale Swarm Algorithm (IDWSA) is proposed. First, a hybrid initialization strategy is used to improve the quality of the initial population. Then two moving rules with similar distribution order and the same distribution center are constructed as comparison items, and an adaptive Cauchy mutation operator and path selection strategy are designed to move individuals. Finally, a global evaluation function is constructed to select individuals to maintain population diversity. On the Solomon standard test set, the distance of the best solution obtained by IDWSA is reduced by 2.25%,13.4%,6% and 1.46% compared with MAPSO,GA,HACO and ABC, respectively, which shortens effectively the driving distance of the vehicle.
  • loading
  • [1]
    ZHOU Lei, WU Xianhua, XU Zeshui, et al. Emergency decision making for natural disasters: An overview[J]. International Journal of Disaster Risk Reduction, 2018, 27: 567–576. doi: 10.1016/j.ijdrr.2017.09.037
    [2]
    DANTZIG G B and RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80–91. doi: 10.1287/mnsc.6.1.80
    [3]
    DORLING K, HEINRICHS J, MESSIER G G, et al. Vehicle routing problems for drone delivery[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(1): 70–85. doi: 10.1109/TSMC.2016.2582745
    [4]
    PARADISO R, ROBERTI R, LAGANÁ D, et al. An exact solution framework for multitrip vehicle-routing problems with time windows[J]. Operations Research, 2020, 68(1): 180–198. doi: 10.1287/opre.2019.1874
    [5]
    MUNARI P, MORENO A, DE LA VEGA J, et al. The robust vehicle routing problem with time windows: Compact formulation and branch-price-and-cut method[J]. Transportation Science, 2019, 53(4): 1043–1066. doi: 10.1287/trsc.2018.0886
    [6]
    刘长石, 申立智, 盛虎宜, 等. 考虑交通拥堵规避的低碳时变车辆路径问题研究[J]. 控制与决策, 2020, 35(10): 2486–2496. doi: 10.13195/j.kzyjc.2019.0257

    LIU Changshi, SHEN Lizhi, SHENG Huyi, et al. Research on low-carbon time-dependent vehicle routing problem with traffic congestion avoidance approaches[J]. Control and Decision, 2020, 35(10): 2486–2496. doi: 10.13195/j.kzyjc.2019.0257
    [7]
    张景玲, 刘金龙, 赵燕伟, 等. 时间依赖型同时取送货VRP及超启发式算法[J]. 计算机集成制造系统, 2020, 26(7): 1905–1917. doi: 10.13196/j.cims.2020.07.019

    ZHANG Jingling, LIU Jinlong, ZHAO Yanwei, et al. Time dependent simultaneous delivery VRP and super heuristic algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1905–1917. doi: 10.13196/j.cims.2020.07.019
    [8]
    MARINAKIS Y, MARINAKI M, and MIGDALAS A. A multi- adaptive particle swarm optimization for the vehicle routing problem with time windows[J]. Information Sciences, 2019, 481: 311–329. doi: 10.1016/j.ins.2018.12.086
    [9]
    RAMACHANDRANPILLAI R and AROCK M. Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing problem with time windows[J]. Neural Computing and Applications, 2021, 33(1): 409–432. doi: 10.1007/s00521-020-04983-8
    [10]
    LAHYANI R, GOUGUENHEIM A L, and COELHO L C. A hybrid adaptive large neighbourhood search for multi-depot open vehicle routing problems[J]. International Journal of Production Research, 2019, 57(22): 6963–6976. doi: 10.1080/00207543.2019.1572929
    [11]
    胡蓉, 李洋, 钱斌, 等. 结合聚类分解的增强蚁群算法求解复杂绿色车辆路径问题[J/OL]. 自动化学报. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190872, 2020.

    HU Rong, LI Yang, QIAN bin, et al. Enhanced ant colony algorithm combined with clustering decomposition for solving complex green vehicle routing problem[J/OL]. Acta Automatica Sinica. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190872, 2020.
    [12]
    ZHANG Zizhen, QIN Hu, and LI Yanzhi. Multi-objective optimization for the vehicle routing problem with outsourcing and profit balancing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1987–2001. doi: 10.1109/TITS.2019.2910274
    [13]
    LONG Jianyu, SUN Zhenzhong, PARDALOS P M, et al. A hybrid multi-objective genetic local search algorithm for the prize-collecting vehicle routing problem[J]. Information Sciences, 2019, 478: 40–61. doi: 10.1016/j.ins.2018.11.006
    [14]
    骆剑平, 李霞, 陈泯融. 基于改进混合蛙跳算法的CVRP求解[J]. 电子与信息学报, 2011, 33(2): 429–434. doi: 10.3724/SP.J.1146.2010.00328

    LUO Jianping, LI Xia, and CHEN Minrong. Improved shuffled frog leaping algorithm for solving CVRP[J]. Journal of Electronics &Information Technology, 2011, 33(2): 429–434. doi: 10.3724/SP.J.1146.2010.00328
    [15]
    李国明, 李军华. 基于混合禁忌搜索算法的随机车辆路径问题[J]. 控制与决策, 2021, 36(9): 2161–2169. doi: 10.13195/j.kzyjc.2020.0107

    LI Guoming and LI Junhua. Stochastic vehicle routing problem based on hybrid tabu search algorithm[J]. Control and Decision, 2021, 36(9): 2161–2169. doi: 10.13195/j.kzyjc.2020.0107
    [16]
    XIANG Xiaoshu, TIAN Ye, ZHANG Xingyi, et al. A pairwise proximity learning-based ant colony algorithm for dynamic vehicle routing problems[J]. IEEE Transactions on Intelligent Transportation Systems, To be published. doi: 10.1109/TITS.2021.3052834.
    [17]
    SOLOMON M M. VRPTW benchmark problems[EB/OL]. http://w.cba.neu.edu/~msolomon/problems.htm, 2003.
    [18]
    ZENG Bing, GAO Liang, and LI Xinyu. Whale swarm algorithm for function optimization[C]. Proceedings of the 13th International Conference on Intelligent Computing Theories and Application, Liverpool, United Kingdom, 2017: 624–639. doi: 10.1007/978-3-319-63309-1_55.
    [19]
    PEZZELLA F, MORGANTI G, and CIASCHETTI G. A genetic algorithm for the flexible job-shop scheduling problem[J]. Computers & Operations Research, 2008, 35(10): 3202–3212. doi: 10.1016/j.cor.2007.02.014
    [20]
    GAO Kaizhou, SUGANTHAN P N, PAN Quanke, et al. An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time[J]. Expert Systems with Applications, 2016, 65: 52–67. doi: 10.1016/j.eswa.2016.07.046
    [21]
    张国辉, 高亮, 李培根, 等. 改进遗传算法求解柔性作业车间调度问题[J]. 机械工程学报, 2009, 45(7): 145–151. doi: 10.3901/JME.2009.07.145

    ZHANG Guohui, GAO Liang, LI Peigen, et al. Improved genetic algorithm for the flexible job-shop scheduling problem[J]. Journal of Mechanical Engineering, 2009, 45(7): 145–151. doi: 10.3901/JME.2009.07.145
    [22]
    WANG Kangzhou, LAN Shulin, and ZHAO Yingxue. A genetic-algorithm-based approach to the two-echelon capacitated vehicle routing problem with stochastic demands in logistics service[J]. Journal of the Operational Research Society, 2017, 68(11): 1409–1421. doi: 10.1057/s41274-016-0170-7
    [23]
    ZHANG Huizhen, ZHANG Qinwan, MA Liang, et al. A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows[J]. Information Sciences, 2019, 490: 166–190. doi: 10.1016/j.ins.2019.03.070
    [24]
    GU Zhaoquan, ZHU Yan, WANG Yuexuan, et al. Applying artificial bee colony algorithm to the multidepot vehicle routing problem[J]. Software: Practice and Experience, 2020. doi: 10.1002/spe.2838.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (841) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return