Citation: | JIANG Huawei, GUO Tao, YANG Zhen, ZHAO Like. Research on Material Emergency Scheduling Based on Discrete Whale Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1484-1494. doi: 10.11999/JEIT210173 |
[1] |
ZHOU Lei, WU Xianhua, XU Zeshui, et al. Emergency decision making for natural disasters: An overview[J]. International Journal of Disaster Risk Reduction, 2018, 27: 567–576. doi: 10.1016/j.ijdrr.2017.09.037
|
[2] |
DANTZIG G B and RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80–91. doi: 10.1287/mnsc.6.1.80
|
[3] |
DORLING K, HEINRICHS J, MESSIER G G, et al. Vehicle routing problems for drone delivery[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(1): 70–85. doi: 10.1109/TSMC.2016.2582745
|
[4] |
PARADISO R, ROBERTI R, LAGANÁ D, et al. An exact solution framework for multitrip vehicle-routing problems with time windows[J]. Operations Research, 2020, 68(1): 180–198. doi: 10.1287/opre.2019.1874
|
[5] |
MUNARI P, MORENO A, DE LA VEGA J, et al. The robust vehicle routing problem with time windows: Compact formulation and branch-price-and-cut method[J]. Transportation Science, 2019, 53(4): 1043–1066. doi: 10.1287/trsc.2018.0886
|
[6] |
刘长石, 申立智, 盛虎宜, 等. 考虑交通拥堵规避的低碳时变车辆路径问题研究[J]. 控制与决策, 2020, 35(10): 2486–2496. doi: 10.13195/j.kzyjc.2019.0257
LIU Changshi, SHEN Lizhi, SHENG Huyi, et al. Research on low-carbon time-dependent vehicle routing problem with traffic congestion avoidance approaches[J]. Control and Decision, 2020, 35(10): 2486–2496. doi: 10.13195/j.kzyjc.2019.0257
|
[7] |
张景玲, 刘金龙, 赵燕伟, 等. 时间依赖型同时取送货VRP及超启发式算法[J]. 计算机集成制造系统, 2020, 26(7): 1905–1917. doi: 10.13196/j.cims.2020.07.019
ZHANG Jingling, LIU Jinlong, ZHAO Yanwei, et al. Time dependent simultaneous delivery VRP and super heuristic algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(7): 1905–1917. doi: 10.13196/j.cims.2020.07.019
|
[8] |
MARINAKIS Y, MARINAKI M, and MIGDALAS A. A multi- adaptive particle swarm optimization for the vehicle routing problem with time windows[J]. Information Sciences, 2019, 481: 311–329. doi: 10.1016/j.ins.2018.12.086
|
[9] |
RAMACHANDRANPILLAI R and AROCK M. Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing problem with time windows[J]. Neural Computing and Applications, 2021, 33(1): 409–432. doi: 10.1007/s00521-020-04983-8
|
[10] |
LAHYANI R, GOUGUENHEIM A L, and COELHO L C. A hybrid adaptive large neighbourhood search for multi-depot open vehicle routing problems[J]. International Journal of Production Research, 2019, 57(22): 6963–6976. doi: 10.1080/00207543.2019.1572929
|
[11] |
胡蓉, 李洋, 钱斌, 等. 结合聚类分解的增强蚁群算法求解复杂绿色车辆路径问题[J/OL]. 自动化学报. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190872, 2020.
HU Rong, LI Yang, QIAN bin, et al. Enhanced ant colony algorithm combined with clustering decomposition for solving complex green vehicle routing problem[J/OL]. Acta Automatica Sinica. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190872, 2020.
|
[12] |
ZHANG Zizhen, QIN Hu, and LI Yanzhi. Multi-objective optimization for the vehicle routing problem with outsourcing and profit balancing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1987–2001. doi: 10.1109/TITS.2019.2910274
|
[13] |
LONG Jianyu, SUN Zhenzhong, PARDALOS P M, et al. A hybrid multi-objective genetic local search algorithm for the prize-collecting vehicle routing problem[J]. Information Sciences, 2019, 478: 40–61. doi: 10.1016/j.ins.2018.11.006
|
[14] |
骆剑平, 李霞, 陈泯融. 基于改进混合蛙跳算法的CVRP求解[J]. 电子与信息学报, 2011, 33(2): 429–434. doi: 10.3724/SP.J.1146.2010.00328
LUO Jianping, LI Xia, and CHEN Minrong. Improved shuffled frog leaping algorithm for solving CVRP[J]. Journal of Electronics &Information Technology, 2011, 33(2): 429–434. doi: 10.3724/SP.J.1146.2010.00328
|
[15] |
李国明, 李军华. 基于混合禁忌搜索算法的随机车辆路径问题[J]. 控制与决策, 2021, 36(9): 2161–2169. doi: 10.13195/j.kzyjc.2020.0107
LI Guoming and LI Junhua. Stochastic vehicle routing problem based on hybrid tabu search algorithm[J]. Control and Decision, 2021, 36(9): 2161–2169. doi: 10.13195/j.kzyjc.2020.0107
|
[16] |
XIANG Xiaoshu, TIAN Ye, ZHANG Xingyi, et al. A pairwise proximity learning-based ant colony algorithm for dynamic vehicle routing problems[J]. IEEE Transactions on Intelligent Transportation Systems, To be published. doi: 10.1109/TITS.2021.3052834.
|
[17] |
SOLOMON M M. VRPTW benchmark problems[EB/OL]. http://w.cba.neu.edu/~msolomon/problems.htm, 2003.
|
[18] |
ZENG Bing, GAO Liang, and LI Xinyu. Whale swarm algorithm for function optimization[C]. Proceedings of the 13th International Conference on Intelligent Computing Theories and Application, Liverpool, United Kingdom, 2017: 624–639. doi: 10.1007/978-3-319-63309-1_55.
|
[19] |
PEZZELLA F, MORGANTI G, and CIASCHETTI G. A genetic algorithm for the flexible job-shop scheduling problem[J]. Computers & Operations Research, 2008, 35(10): 3202–3212. doi: 10.1016/j.cor.2007.02.014
|
[20] |
GAO Kaizhou, SUGANTHAN P N, PAN Quanke, et al. An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time[J]. Expert Systems with Applications, 2016, 65: 52–67. doi: 10.1016/j.eswa.2016.07.046
|
[21] |
张国辉, 高亮, 李培根, 等. 改进遗传算法求解柔性作业车间调度问题[J]. 机械工程学报, 2009, 45(7): 145–151. doi: 10.3901/JME.2009.07.145
ZHANG Guohui, GAO Liang, LI Peigen, et al. Improved genetic algorithm for the flexible job-shop scheduling problem[J]. Journal of Mechanical Engineering, 2009, 45(7): 145–151. doi: 10.3901/JME.2009.07.145
|
[22] |
WANG Kangzhou, LAN Shulin, and ZHAO Yingxue. A genetic-algorithm-based approach to the two-echelon capacitated vehicle routing problem with stochastic demands in logistics service[J]. Journal of the Operational Research Society, 2017, 68(11): 1409–1421. doi: 10.1057/s41274-016-0170-7
|
[23] |
ZHANG Huizhen, ZHANG Qinwan, MA Liang, et al. A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows[J]. Information Sciences, 2019, 490: 166–190. doi: 10.1016/j.ins.2019.03.070
|
[24] |
GU Zhaoquan, ZHU Yan, WANG Yuexuan, et al. Applying artificial bee colony algorithm to the multidepot vehicle routing problem[J]. Software: Practice and Experience, 2020. doi: 10.1002/spe.2838.
|