Citation: | WAN Honglin, WANG Xiaomin, PENG Zhenwei, BAI Zhiquan, YANG Xinghai, SUN Jiande. Dense Crowd Counting Algorithm Based on New Multi-scale Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1129-1136. doi: 10.11999/JEIT210163 |
[1] |
ARTETA C, LEMPITSKY V, and ZISSERMAN A. Counting in the wild[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 483–498.
|
[2] |
ARTETA C, LEMPITSKY V, NOBLE J A, et al. Interactive object counting[C]. Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 504–518.
|
[3] |
SHANG Chong, AI Haizhou, and BAI Bo. End-to-end crowd counting via joint learning local and global count[C]. Proceedings of 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 1215–1219.
|
[4] |
ZHANG Yingying, ZHOU Desen, CHEN Siqin, et al. Single-image crowd counting via multi-column convolutional neural network[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 589–597.
|
[5] |
OÑORO-RUBIO D and LÓPEZ-SASTRE R J. Towards perspective-free object counting with deep learning[C]. Proceedings of the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 2016: 615–629.
|
[6] |
MARSDEN M, MCGUINNESS K, LITTLE S, et al. ResnetCrowd: A residual deep learning architecture for crowd counting, violent behaviour detection and crowd density level classification[C]. Proceedings of the 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, Lecce, Italy, 2017: 123–126.
|
[7] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[8] |
LI Yuhong, ZHANG Xiaofan, and CHEN Deming. CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1091–1100.
|
[9] |
SAM D B, SURYA S, and BABU R V. Switching convolutional neural network for crowd counting[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4031–4039.
|
[10] |
WANG Qi, GAO Junyu, LIN Wei, et al. Learning from synthetic data for crowd counting in the wild[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8190–8199.
|
[11] |
LI Zhengqi, DEKEL T, COLE F, et al. Learning the depths of moving people by watching frozen people[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4516–4525.
|
[12] |
WANG Shunzhou, LU Yao, ZHOU Tianfei, et al. SCLNet: Spatial context learning network for congested crowd counting[J]. Neurocomputing, 2020, 404: 227–239. doi: 10.1016/j.neucom.2020.04.139
|
[13] |
CHEN Xinya, BIN Yanrui, GAO Changxin, et al. Relevant region prediction for crowd counting[J]. Neurocomputing, 2020, 407: 399–408. doi: 10.1016/j.neucom.2020.04.117
|
[14] |
孟月波, 纪拓, 刘光辉, 等. 编码-解码多尺度卷积神经网络人群计数方法[J]. 西安交通大学学报, 2020, 54(5): 149–157.
MENG Yuebo, JI Tuo, LIU Guanghui, et al. Encoding-decoding multi-scale convolutional neural network for crowd counting[J]. Journal of Xi'an Jiaotong University, 2020, 54(5): 149–157.
|
[15] |
左静, 巴玉林. 基于多尺度融合的深度人群计数算法[J]. 激光与光电子学进展, 2020, 57(24): 307–315.
ZUO Jing and BA Yulin. Population-depth counting algorithm based on multiscale fusion[J]. Laser &Optoelectronics Progress, 2020, 57(24): 307–315.
|
[16] |
ZOU Zhikang, CHENG Yu, QU Xiaoye, et al. Attend to count: Crowd counting with adaptive capacity multi-scale CNNs[J]. Neurocomputing, 2019, 367: 75–83. doi: 10.1016/j.neucom.2019.08.009
|
[17] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[18] |
IDREES H, SALEEMI I, SEIBERT C, et al. Multi-source multi-scale counting in extremely dense crowd images[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2547–2554.
|
[19] |
CHEN Ke, LOY C C, GONG Shaogang, et al. Feature mining for localised crowd counting[C]. Proceedings of the British Machine Vision Conference, Surrey, UK, 2012: 3–5.
|
[20] |
CHAN A B, LIANG Z S J, and VASCONCELOS N. Privacy preserving crowd monitoring: Counting people without people models or tracking[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–7.
|
[21] |
GAO Junyu, WANG Qi, and YUAN Yuan. SCAR: Spatial-/channel-wise attention regression networks for crowd counting[J]. Neurocomputing, 2019, 363: 1–8. doi: 10.1016/j.neucom.2019.08.018
|
[22] |
ZHANG Youmei, ZHOU Chunluan, CHANG Faliang, et al. Multi-resolution attention convolutional neural network for crowd counting[J]. Neurocomputing, 2018, 329: 144–152.
|
[23] |
MA Junjie, DAI Yaping, and TAN Y P. Atrous convolutions spatial pyramid network for crowd counting and density estimation[J]. Neurocomputing, 2019, 350: 91–101. doi: 10.1016/j.neucom.2019.03.065
|
[24] |
ZHU Liang, ZHAO Zhijian, LU Chao, et al. Dual path multi-scale fusion networks with attention for crowd counting[J]. arXiv: 1902.01115, 2019.
|
[25] |
RANJAN V, LE H, and HOAI M. Iterative crowd counting[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 278–293.
|
[26] |
YANG Biao, ZHAN Weiqin, WANG Nan, et al. Counting crowds using a scale-distribution-aware network and adaptive human-shaped kernel[J]. Neurocomputing, 2020, 390: 207–216. doi: 10.1016/j.neucom.2019.02.071
|
[27] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
|
[28] |
REN Shaoqiang, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[29] |
XIONG Feng, SHI Xingjian, and YEUNG D Y. Spatiotemporal modeling for crowd counting in videos[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5161–5169.
|
[30] |
XU Mingliang, GE Zhaoyang, JIANG Xiaoheng, et al. Depth Information Guided Crowd Counting for complex crowd scenes[J]. Pattern Recognition Letters, 2019, 125: 563–569. doi: 10.1016/j.patrec.2019.02.026
|
[31] |
SHEN Zan, XU Yi, NI Bingbing, et al. Crowd counting via adversarial cross-scale consistency pursuit[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5245–5254.
|
[32] |
CAO Xinkun, WANG Zhipeng, ZHAO Yanyun, et al. Scale aggregation network for accurate and efficient crowd counting[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 757–773.
|
[33] |
邓远志, 胡钢. 基于特征金字塔的人群密度估计方法[J]. 测控技术, 2020, 39(6): 108–114.
DENG Yuanzhi and HU Gang. Crowd density evaluation method based on feature pyramid[J]. Measurement &Control Technology, 2020, 39(6): 108–114.
|