Advanced Search
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
GAO Chenqiang, XIE Chengjuan, YANG Feng, ZHAO Yue, LI Pengcheng. Image Harmonization via Multi-scale Feature Calibration[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1495-1502. doi: 10.11999/JEIT210159
Citation: GAO Chenqiang, XIE Chengjuan, YANG Feng, ZHAO Yue, LI Pengcheng. Image Harmonization via Multi-scale Feature Calibration[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1495-1502. doi: 10.11999/JEIT210159

Image Harmonization via Multi-scale Feature Calibration

doi: 10.11999/JEIT210159
Funds:  The National Natural Science Foundation of China (62176035, 61906025), Chongqing Research Program of Basic Research and Frontier Technology (cstc2020jcyj-msxmX0835, cstc2021jcyj-bsh0155), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201900607, KJZD-K202100606, KJQN202000647, KJQN202100646)
  • Received Date: 2021-02-25
  • Rev Recd Date: 2021-08-22
  • Available Online: 2021-09-08
  • Publish Date: 2022-04-18
  • Image composition is an important operation in image processing, but the inharmonious appearance between the foreground region and background makes the composite image look unrealistic. Image harmonization is a very important step in image compositing, and targets at adjusting the appearances of foreground to make it consistent with background, improving the visual quality of output image. However, previous approaches only consider the appearance difference between the foreground and the background of the composite image, and neglect the local brightness change of the image, making the illumination of the whole image inharmonious. In order to solve the problem, in this work, a novel module named Multi-scale Feature Calibration Module (MFCM) is proposed to learn the subtle feature differences between multiple scales of receptive field. Based on the proposed MFCM, a novel encoder is designed further to learn the illumination and brightness change in composite image, followed by a decoder is used to reconstruct image. The foreground normalized regression loss is utilized to instruct the network to learn and adjust the appearances of the foreground. The proposed method is validated on a widely used iHarmony4 dataset. The results show that the proposed method achieves the state of the art and demonstrate the effectiveness of the proposed method.
  • loading
  • [1]
    TSAI Y H, SHEN Xiaohui, LIN Zhe, et al. Deep image harmonization[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2799–2807.
    [2]
    SOFIIUK K, POPENOVA P, and KONUSHIN A. Foreground-aware semantic representations for image harmonization[EB/OL]. https://arxiv.org/abs/2006.00809, 2020.
    [3]
    CUN Xiaodong and PUN C M. Improving the harmony of the composite image by spatial-separated attention module[J]. IEEE Transactions on Image Processing, 2020, 29: 4759–4771. doi: 10.1109/TIP.2020.2975979
    [4]
    CONG Wenyan, ZHANG Jianfu, NIU Li, et al. DoveNet: Deep image harmonization via domain verification[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 8391–8400.
    [5]
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9.
    [6]
    LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519.
    [7]
    SUNKAVALLI K, JOHNSON M K, MATUSIK W, et al. Multi-scale image harmonization[J]. ACM Transactions on Graphics, 2010, 29(4): 1–10. doi: 10.1145/1778765.1778862
    [8]
    ZHU Junyan, KR?HENB?HL P, SHECHTMAN E, et al. Learning a discriminative model for the perception of realism in composite images[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 3943–3951.
    [9]
    ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5967–5976.
    [10]
    尹梦晓, 林振峰, 杨锋. 基于动态感受野的自适应多尺度信息融合的图像转换[J]. 电子与信息学报, 2021, 43(8): 2386–2394. doi: 10.11999/JEIT200675

    YIN Mengxiao, LIN Zhenfeng, and YANG Feng. Adaptive multi-scale information fusion based on dynamic receptive field for image-to-image translation[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2386–2394. doi: 10.11999/JEIT200675
    [11]
    LEDIG C, THEIS L, HUSZ?R F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 105–114.
    [12]
    WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 63–79.
    [13]
    XIONG Wei, YU Jiahui, LIN Zhe, et al. Foreground-aware image inpainting[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5833–5841.
    [14]
    易诗, 吴志娟, 朱竞铭, 等. 基于多尺度生成对抗网络的运动散焦红外图像复原[J]. 电子与信息学报, 2020, 42(7): 1766–1773. doi: 10.11999/JEIT190495

    YI Shi, WU Zhijuan, ZHU Jingming, et al. Motion defocus infrared image restoration based on multi scale generative adversarial network[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1766–1773. doi: 10.11999/JEIT190495
    [15]
    KOTOVENKO D, SANAKOYEU A, MA Pingchuan, et al. A content transformation block for image style transfer[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 10024–10033.
    [16]
    张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移[J]. 电子与信息学报, 2020, 42(5): 1216–1222. doi: 10.11999/JEIT190407

    ZHANG Jinglei and HOU Yawei. Image-to-image translation based on improved cycle-consistent generative adversarial network[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1216–1222. doi: 10.11999/JEIT190407
    [17]
    ANOKHIN I, SOLOVEV P, KORZHENKOV D, et al. High-resolution daytime translation without domain labels[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 7485–7494.
    [18]
    HE Mingming, LIAO Jing, CHEN Dongdong, et al. Progressive color transfer with dense semantic correspondences[J]. ACM Transactions on Graphics, 2019, 38(2): 1–18. doi: 10.1145/3292482
    [19]
    ULYANOV D, VEDALDI A, and LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL]. https://arxiv.org/abs/1607.08022, 2017.
    [20]
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, 2015: 448–456.
    [21]
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [22]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference, Munich, Germany, 2018: 3–19.
    [23]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. The 13th European Conference, Zurich, Switzerland, 2014: 740–755.
    [24]
    BYCHKOVSKY V, PARIS S, CHAN E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C]. The CVPR 2011, Colorado, USA, 2011: 97–104.
    [25]
    ZHOU Hao, SATTLER T, and JACOBS D W. Evaluating local features for day-night matching[C]. The 14th European Conference on Computer Vision, Amsterdam, Holland, 2016: 724–736.
    [26]
    DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (1297) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return