Citation: | GAO Chenqiang, XIE Chengjuan, YANG Feng, ZHAO Yue, LI Pengcheng. Image Harmonization via Multi-scale Feature Calibration[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1495-1502. doi: 10.11999/JEIT210159 |
[1] |
TSAI Y H, SHEN Xiaohui, LIN Zhe, et al. Deep image harmonization[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 2799–2807.
|
[2] |
SOFIIUK K, POPENOVA P, and KONUSHIN A. Foreground-aware semantic representations for image harmonization[EB/OL]. https://arxiv.org/abs/2006.00809, 2020.
|
[3] |
CUN Xiaodong and PUN C M. Improving the harmony of the composite image by spatial-separated attention module[J]. IEEE Transactions on Image Processing, 2020, 29: 4759–4771. doi: 10.1109/TIP.2020.2975979
|
[4] |
CONG Wenyan, ZHANG Jianfu, NIU Li, et al. DoveNet: Deep image harmonization via domain verification[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 8391–8400.
|
[5] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9.
|
[6] |
LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519.
|
[7] |
SUNKAVALLI K, JOHNSON M K, MATUSIK W, et al. Multi-scale image harmonization[J]. ACM Transactions on Graphics, 2010, 29(4): 1–10. doi: 10.1145/1778765.1778862
|
[8] |
ZHU Junyan, KR?HENB?HL P, SHECHTMAN E, et al. Learning a discriminative model for the perception of realism in composite images[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 3943–3951.
|
[9] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5967–5976.
|
[10] |
尹梦晓, 林振峰, 杨锋. 基于动态感受野的自适应多尺度信息融合的图像转换[J]. 电子与信息学报, 2021, 43(8): 2386–2394. doi: 10.11999/JEIT200675
YIN Mengxiao, LIN Zhenfeng, and YANG Feng. Adaptive multi-scale information fusion based on dynamic receptive field for image-to-image translation[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2386–2394. doi: 10.11999/JEIT200675
|
[11] |
LEDIG C, THEIS L, HUSZ?R F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 105–114.
|
[12] |
WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]. Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 63–79.
|
[13] |
XIONG Wei, YU Jiahui, LIN Zhe, et al. Foreground-aware image inpainting[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5833–5841.
|
[14] |
易诗, 吴志娟, 朱竞铭, 等. 基于多尺度生成对抗网络的运动散焦红外图像复原[J]. 电子与信息学报, 2020, 42(7): 1766–1773. doi: 10.11999/JEIT190495
YI Shi, WU Zhijuan, ZHU Jingming, et al. Motion defocus infrared image restoration based on multi scale generative adversarial network[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1766–1773. doi: 10.11999/JEIT190495
|
[15] |
KOTOVENKO D, SANAKOYEU A, MA Pingchuan, et al. A content transformation block for image style transfer[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 10024–10033.
|
[16] |
张惊雷, 厚雅伟. 基于改进循环生成式对抗网络的图像风格迁移[J]. 电子与信息学报, 2020, 42(5): 1216–1222. doi: 10.11999/JEIT190407
ZHANG Jinglei and HOU Yawei. Image-to-image translation based on improved cycle-consistent generative adversarial network[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1216–1222. doi: 10.11999/JEIT190407
|
[17] |
ANOKHIN I, SOLOVEV P, KORZHENKOV D, et al. High-resolution daytime translation without domain labels[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 7485–7494.
|
[18] |
HE Mingming, LIAO Jing, CHEN Dongdong, et al. Progressive color transfer with dense semantic correspondences[J]. ACM Transactions on Graphics, 2019, 38(2): 1–18. doi: 10.1145/3292482
|
[19] |
ULYANOV D, VEDALDI A, and LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL]. https://arxiv.org/abs/1607.08022, 2017.
|
[20] |
IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning - Volume 37, Lille, France, 2015: 448–456.
|
[21] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
|
[22] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference, Munich, Germany, 2018: 3–19.
|
[23] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. The 13th European Conference, Zurich, Switzerland, 2014: 740–755.
|
[24] |
BYCHKOVSKY V, PARIS S, CHAN E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C]. The CVPR 2011, Colorado, USA, 2011: 97–104.
|
[25] |
ZHOU Hao, SATTLER T, and JACOBS D W. Evaluating local features for day-night matching[C]. The 14th European Conference on Computer Vision, Amsterdam, Holland, 2016: 724–736.
|
[26] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
|