Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Shuzhi SU, Jun XIE, Xinrui PING, Penglian GAO. Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154
Citation: Shuzhi SU, Jun XIE, Xinrui PING, Penglian GAO. Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154

Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition

doi: 10.11999/JEIT210154
Funds:  The National Natural Science Foundation of China (61806006), The China Postdoctoral Science Foundation (2019M660149), The Institute of Energy, Hefei Comprehensive National Science Center (19KZS203)
  • Received Date: 2021-02-18
  • Rev Recd Date: 2021-05-20
  • Available Online: 2021-06-04
  • Publish Date: 2021-11-23
  • As a traditional feature extraction algorithm, Canonical Correlation Analysis (CCA) has been excellently used for the field of pattern recognition. It aims to find the projection direction that makes the maximum of the correlation between two groups of modal data. However, since the algorithm is an unsupervised linear method, it can not use intrinsic geometry structures and supervised information hidden in data, which will cause difficulty in dealing with high-dimensional nonlinear data. Therefore, this paper proposes a new nonlinear feature extraction algorithm, namely Graph Enhanced Canonical Correlation Analysis (GECCA). The algorithm uses different components of the data to construct multiple component graphs, which retains effectively the complex manifold structures between the data. The algorithm utilizes the probability evaluation method to use class label information, and the graph enhancement method is utilized to integrate the geometry manifolds and the supervised information into the typical correlation analysis framework. Targeted experiments are designed on the face and handwritten digital image datasets to evaluate the algorithm. Good experimental results show the advantages of GECCA in image recognition.
  • loading
  • [1]
    LIU Zhonghua, LAI Zhihui, OU Weihua, et al. Structured optimal graph based sparse feature extraction for semi-supervised learning[J]. Signal Processing, 2020, 170: 107456. doi: 10.1016/j.sigpro.2020.107456
    [2]
    王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138

    WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
    [3]
    YI Shuangyan, LAI Zhihui, HE Zhenyu, et al. Joint sparse principal component analysis[J]. Pattern Recognition, 2017, 61: 524–536. doi: 10.1016/j.patcog.2016.08.025
    [4]
    BRO R and SMILDE A K. Principal component analysis[J]. Analytical Methods, 2014, 6(9): 2812–2831. doi: 10.1039/C3AY41907J
    [5]
    刘政怡, 段群涛, 石松, 等. 基于多模态特征融合监督的RGB-D图像显著性检测[J]. 电子与信息学报, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297

    LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
    [6]
    姜庆超, 颜学峰. 基于局部−整体相关特征的多单元化工过程分层监测[J]. 自动化学报, 2020, 46(9): 1770–1782.

    JIANG Qingchao and YAN Xuefeng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features[J]. Acta Automatica Sinica, 2020, 46(9): 1770–1782.
    [7]
    YANG Xinghao, LIU Weifeng, LIU Wei, et al. A survey on canonical correlation analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2349–2368. doi: 10.1109/TKDE.2019.2958342
    [8]
    YANG Xinghao, LIU Weifeng, TAO Dapeng, et al. Canonical correlation analysis networks for two-view image recognition[J]. Information Sciences, 2017, 385/386: 338–352. doi: 10.1016/j.ins.2017.01.011
    [9]
    SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. Orthogonal canonical correlation analysis and its application in feature fusion[C]. The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 151–157.
    [10]
    EL MADANY N E D, HE Yifeng, and GUAN Ling. Human action recognition by fusing deep features with globality locality preserving canonical correlation analysis[C]. 2017 IEEE International Conference on Image Processing, Beijing, China, 2017: 2871–2875.
    [11]
    ELMADANY N E D, HE Yifeng, and GUAN Ling. Information fusion for human action recognition via biset/multiset globality locality preserving canonical correlation analysis[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5275–5287. doi: 10.1109/TIP.2018.2855438
    [12]
    WANG Fengshan and ZHANG Daoqiang. A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction[J]. Neural Processing Letters, 2013, 37(2): 135–146. doi: 10.1007/s11063-012-9238-9
    [13]
    GAO Xizhan, NIU Sujie, and SUN Quansen. Two-directional two-dimensional kernel canonical correlation analysis[J]. IEEE Signal Processing Letters, 2019, 26(11): 1578–1582. doi: 10.1109/LSP.2019.2939986
    [14]
    MELZER T, REITER M, and BISCHOF H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961–1971. doi: 10.1016/S0031-3203(03)00058-X
    [15]
    SUN Tingkai, CHEN Songcan, YANG Jingyu, et al. A supervised combined feature extraction method for recognition[C]. The IEEE International Conference on Data Mining, Pisa, Italy, 2008: 1043–1048.
    [16]
    GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
    [17]
    CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475
    [18]
    CHEN Jia, WANG Gang, SHEN Yanning, et al. Canonical correlation analysis of datasets with a common source graph[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4398–4408. doi: 10.1109/TSP.2018.2853130
    [19]
    SU Shuzhi, FANG Xianjin, YANG Gaoming, et al. Self-balanced multi-view orthogonality correlation analysis for image feature learning[J]. Infrared Physics & Technology, 2019, 100: 44–51.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (936) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return