Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
XU Yongjun, YANG Haoke, LI Guojun, CHEN Qianbin. Energy-efficient Optimization Algorithm in Multi-tag Wireless-powered Backscatter Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3492-3498. doi: 10.11999/JEIT210772
Citation: Shuzhi SU, Jun XIE, Xinrui PING, Penglian GAO. Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154

Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition

doi: 10.11999/JEIT210154
Funds:  The National Natural Science Foundation of China (61806006), The China Postdoctoral Science Foundation (2019M660149), The Institute of Energy, Hefei Comprehensive National Science Center (19KZS203)
  • Received Date: 2021-02-18
  • Rev Recd Date: 2021-05-20
  • Available Online: 2021-06-04
  • Publish Date: 2021-11-23
  • As a traditional feature extraction algorithm, Canonical Correlation Analysis (CCA) has been excellently used for the field of pattern recognition. It aims to find the projection direction that makes the maximum of the correlation between two groups of modal data. However, since the algorithm is an unsupervised linear method, it can not use intrinsic geometry structures and supervised information hidden in data, which will cause difficulty in dealing with high-dimensional nonlinear data. Therefore, this paper proposes a new nonlinear feature extraction algorithm, namely Graph Enhanced Canonical Correlation Analysis (GECCA). The algorithm uses different components of the data to construct multiple component graphs, which retains effectively the complex manifold structures between the data. The algorithm utilizes the probability evaluation method to use class label information, and the graph enhancement method is utilized to integrate the geometry manifolds and the supervised information into the typical correlation analysis framework. Targeted experiments are designed on the face and handwritten digital image datasets to evaluate the algorithm. Good experimental results show the advantages of GECCA in image recognition.
  • [1]
    LIU Zhonghua, LAI Zhihui, OU Weihua, et al. Structured optimal graph based sparse feature extraction for semi-supervised learning[J]. Signal Processing, 2020, 170: 107456. doi: 10.1016/j.sigpro.2020.107456
    [2]
    王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138

    WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
    [3]
    YI Shuangyan, LAI Zhihui, HE Zhenyu, et al. Joint sparse principal component analysis[J]. Pattern Recognition, 2017, 61: 524–536. doi: 10.1016/j.patcog.2016.08.025
    [4]
    BRO R and SMILDE A K. Principal component analysis[J]. Analytical Methods, 2014, 6(9): 2812–2831. doi: 10.1039/C3AY41907J
    [5]
    刘政怡, 段群涛, 石松, 等. 基于多模态特征融合监督的RGB-D图像显著性检测[J]. 电子与信息学报, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297

    LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
    [6]
    姜庆超, 颜学峰. 基于局部−整体相关特征的多单元化工过程分层监测[J]. 自动化学报, 2020, 46(9): 1770–1782.

    JIANG Qingchao and YAN Xuefeng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features[J]. Acta Automatica Sinica, 2020, 46(9): 1770–1782.
    [7]
    YANG Xinghao, LIU Weifeng, LIU Wei, et al. A survey on canonical correlation analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2349–2368. doi: 10.1109/TKDE.2019.2958342
    [8]
    YANG Xinghao, LIU Weifeng, TAO Dapeng, et al. Canonical correlation analysis networks for two-view image recognition[J]. Information Sciences, 2017, 385/386: 338–352. doi: 10.1016/j.ins.2017.01.011
    [9]
    SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. Orthogonal canonical correlation analysis and its application in feature fusion[C]. The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 151–157.
    [10]
    EL MADANY N E D, HE Yifeng, and GUAN Ling. Human action recognition by fusing deep features with globality locality preserving canonical correlation analysis[C]. 2017 IEEE International Conference on Image Processing, Beijing, China, 2017: 2871–2875.
    [11]
    ELMADANY N E D, HE Yifeng, and GUAN Ling. Information fusion for human action recognition via biset/multiset globality locality preserving canonical correlation analysis[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5275–5287. doi: 10.1109/TIP.2018.2855438
    [12]
    WANG Fengshan and ZHANG Daoqiang. A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction[J]. Neural Processing Letters, 2013, 37(2): 135–146. doi: 10.1007/s11063-012-9238-9
    [13]
    GAO Xizhan, NIU Sujie, and SUN Quansen. Two-directional two-dimensional kernel canonical correlation analysis[J]. IEEE Signal Processing Letters, 2019, 26(11): 1578–1582. doi: 10.1109/LSP.2019.2939986
    [14]
    MELZER T, REITER M, and BISCHOF H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961–1971. doi: 10.1016/S0031-3203(03)00058-X
    [15]
    SUN Tingkai, CHEN Songcan, YANG Jingyu, et al. A supervised combined feature extraction method for recognition[C]. The IEEE International Conference on Data Mining, Pisa, Italy, 2008: 1043–1048.
    [16]
    GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
    [17]
    CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475
    [18]
    CHEN Jia, WANG Gang, SHEN Yanning, et al. Canonical correlation analysis of datasets with a common source graph[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4398–4408. doi: 10.1109/TSP.2018.2853130
    [19]
    SU Shuzhi, FANG Xianjin, YANG Gaoming, et al. Self-balanced multi-view orthogonality correlation analysis for image feature learning[J]. Infrared Physics & Technology, 2019, 100: 44–51.
  • Cited by

    Periodical cited type(9)

    1. 欧丰林,林淑彬. 融合高斯混合模型和深度学习的目标跟踪. 吉林师范大学学报(自然科学版). 2020(01): 127-134 .
    2. 张明月,王静. 基于深度学习的交互似然目标跟踪算法. 计算机科学. 2019(02): 279-285 .
    3. 马义超,赵运基,张新良. 基于PCA初始化卷积核的CNN手写数字识别算法. 计算机工程与应用. 2019(13): 134-139 .
    4. 蔡楠,李萍. 基于KPCA初始化卷积神经网络的方法. 计算机技术与发展. 2019(07): 76-79 .
    5. 张烁,张荣. 基于卷积神经网络模型的手写数字辨识算法研究. 计算机应用与软件. 2019(08): 172-176+261 .
    6. 毕笃彦,王世平,刘坤,何林远. 基于并行映射卷积网络的超分辨率重建算法. 系统工程与电子技术. 2018(08): 1873-1880 .
    7. 韩东,王学军. 基于改进的卷积神经网络多姿态人脸识别研究. 吉林大学学报(信息科学版). 2018(05): 376-381 .
    8. 梁蒙蒙,周涛,张飞飞,杨健,夏勇. 卷积神经网络及其在医学图像分析中的应用研究. 生物医学工程学杂志. 2018(06): 977-985 .
    9. 樊养余,李祖贺,王凤琴,马江涛. 基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类. 电子与信息学报. 2017(01): 167-175 . 本站查看

    Other cited types(32)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (990) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return