Citation: | MA Hailong, YIN Zinuo, HU Tao. A Lightweight Program Anomaly Detection Method for Heterogeneous Platform[J]. Journal of Electronics & Information Technology, 2022, 44(2): 602-610. doi: 10.11999/JEIT210152 |
[1] |
张祖法. 网络流量中面向缓冲区溢出漏洞的恶意程序检测方法研究[D]. [硕士论文], 江苏大学, 2020.
ZHANG Zufa. Research on malware detection method for buffer overflow vulnerability in network traffic[D]. [Master dissertation], Jiangsu University, 2020.
|
[2] |
张雄冠, 邵培南. 基于textCNN模型的Android恶意程序检测[J]. 计算机系统应用, 2021, 30(1): 114–121. doi: 10.15888/j.cnki.csa.007722
ZHANG Xiongguan and SHAO Peinan. Android malware detection based on textCNN model[J]. Computer Systems &Applications, 2021, 30(1): 114–121. doi: 10.15888/j.cnki.csa.007722
|
[3] |
吴震雄. Android恶意软件静态检测方案研究[D]. [硕士论文], 南京邮电大学, 2015.
WU Zhenxiong. Research on android malware static detection system[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2015.
|
[4] |
MA Zhuo, GE Haoran, LIU Yang, et al. A combination method for android malware detection based on control flow graphs and machine learning algorithms[J]. IEEE Access, 2019, 7: 21235–21245. doi: 10.1109/ACCESS.2019.2896003
|
[5] |
DINABURG A, ROYAL P, SHARIF M, et al. Ether: Malware analysis via hardware virtualization extensions[C]. The 15th ACM Conference on Computer and Communications Security, Alexandria, USA, 2008: 51–62. doi: 10.1145/1455770.1455779.
|
[6] |
张若楠, 李红辉, 张骏温. 一种融合改进Kmeans和KNN的网络入侵检测方法[J]. 计算机科学, 2018, 10A(45): 172–176.
ZHANG Ruonan, LI Honghui, and ZHANG Junwen. Hybrid improved Kmeans with improved KNN for network intrusion detection algorithm[J]. Compouter Science, 2018, 10A(45): 172–176.
|
[7] |
汪洁, 王长青. 子图相似性的恶意程序检测方法[J]. 软件学报, 2020, 31(11): 3436–3447. doi: 10.13328/j.cnki.jos.005863
WANG Jie and WANG Changqing. Malware detection method based on subgraph similarity[J]. Journal of Software, 2020, 31(11): 3436–3447. doi: 10.13328/j.cnki.jos.005863
|
[8] |
陈志峰, 李清宝, 张平, 等. 基于聚类分析的内核恶意软件特征选择[J]. 电子与信息学报, 2015, 37(12): 2821–2829. doi: 10.11999/JEIT150387
CHEN Zhifeng, LI Qingbao, ZHANG Ping, et al. Signature selection for kernel malware based on cluster analysis[J]. Journal of Electronics &Information Technology, 2015, 37(12): 2821–2829. doi: 10.11999/JEIT150387
|
[9] |
YOO S, KIM S, KIM S, et al. AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification[J]. Information Sciences, 2021, 546: 420–435. doi: 10.1016/j.ins.2020.08.082
|
[10] |
邬江兴. 网络空间拟态防御原理[M]. 2版. 北京: 科学出版社, 2018: 148–149.
WU Jiangxing. The Principle of Cyber Mimic Defence[M]. 2nd ed. Beijing: Science Press, 2018: 148–149. .
|
[11] |
GARCIA M, BESSANI A, GASHI I, et al. Analysis of operating system diversity for intrusion tolerance[J]. Software: Practice and Experience, 2014, 44(6): 735–770. doi: 10.1002/spe.2180
|
[12] |
ÖSTERLUND S, KONING K, OLIVIER P, et al. kMVX: Detecting kernel information leaks with multi-variant execution[C]. The Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, USA, 2019: 559–572. doi: 10.1145/3297858.3304054.
|
[13] |
KIRAT D, VIGNA G, and KRUEGEL C. BareCloud: Bare-metal analysis-based evasive malware detection[C]. The 23rd USENIX conference on Security Symposium, Berkeley, USA, 2014: 287–301.
|
[14] |
XU Meng and KIM T. PLATPAL: Detecting malicious documents with platform diversity[C]. The 26th USENIX Conference on Security Symposium, Vancouver, Canada, 2017: 271–287.
|
[15] |
张剑, 童言, 徐明迪, 等. 轻量级主机数据采集与实时异常事件检测方法研究[J]. 西安交通大学学报, 2017, 51(4): 97–102. doi: 10.7652/xjtuxb201704015
ZHANG Jian, TONG Yan, XU Mingdi, et al. A method for data collection and real-time anomaly detection of lightweight hosts[J]. Journal of Xi’an Jiaotong University, 2017, 51(4): 97–102. doi: 10.7652/xjtuxb201704015
|
[16] |
张浚, 张凤荔, 罗琴, 等. 基于多特征相似度的大规模网络异常检测算法[J]. 计算机工程, 2007, 33(24): 181–183. doi: 10.3969/j.issn.1000-3428.2007.24.063
ZHANG Jun, ZHANG Fengli, LUO Qin, et al. Large-scale network anomaly detecting method based on multi-feature similarity[J]. Computer Engineering, 2007, 33(24): 181–183. doi: 10.3969/j.issn.1000-3428.2007.24.063
|
[17] |
HU Shuai, XIAO Zhihua, RAO Qiang, et al. An anomaly detection model of user behavior based on similarity clustering[C]. Proceedings of 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference, Chongqing, China, 2018. doi: 10.1109/ITOEC.2018.8740748.
|
[18] |
缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究[J]. 电子与信息学报, 2020, 42(11): 2706–2712. doi: 10.11999/JEIT190655
MIAO Xianghua and SHAN Xiaoche. Research on intrusion detection technology based on densely connected convolutional neural networks[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2706–2712. doi: 10.11999/JEIT190655
|
[19] |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
|