Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Hua XU, Bailin SONG, Lei JIANG, Ning RAO, Yunhao SHI. An Intelligent Decision-making Algorithm for Communication Countermeasure Jamming Resource Allocation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3086-3095. doi: 10.11999/JEIT210115
Citation: Hua XU, Bailin SONG, Lei JIANG, Ning RAO, Yunhao SHI. An Intelligent Decision-making Algorithm for Communication Countermeasure Jamming Resource Allocation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3086-3095. doi: 10.11999/JEIT210115

An Intelligent Decision-making Algorithm for Communication Countermeasure Jamming Resource Allocation

doi: 10.11999/JEIT210115
  • Received Date: 2021-02-01
  • Rev Recd Date: 2021-05-26
  • Available Online: 2021-06-11
  • Publish Date: 2021-11-23
  • Considering the intelligent decision of battlefield communication countermeasure, based on the overall confrontation, a Bootstrapped expert trajectory memory replay - Hierarchical reinforcement learning - Jamming resources distribution decision - Making algorithm(BHJM) is proposed, and the algorithm for frequency hopping jamming decision problem, according to the frequency distribution, jamming spectrum is divided, based on hierarchical reinforcement learning again decision jamming spectrum and bandwidth are divided, and finally based on the bootstrapped expert trajectory memory replay mechanism, the algorithm is optimized, the algorithm can is existing resources, especially under the condition of insufficient resources, give priority to jam the most threat target, obtain the optimal jamming effect and reduce the total jamming bandwidth. The simulation results show that, compared with the existing resource allocation decision algorithms, the proposed algorithm can save 25% of the resources of jammers and 15% of the jamming bandwidth, which is of great practical value.
  • loading
  • [1]
    XIAO Liang, LIU Jinliang, LI Qiangda, et al. User-centric view of jamming games in cognitive radio networks[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(12): 2578–2590. doi: 10.1109/TIFS.2015.2467593
    [2]
    AMURU S D and BUEHRER R M. Optimal jamming against digital modulation[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(10): 2212–2224. doi: 10.1109/TIFS.2015.2451081
    [3]
    王沙飞, 鲍雁飞, 李岩. 认知电子战体系结构与技术[J]. 中国科学: 信息科学, 2018, 48(12): 1603–1613. doi: 10.1360/N112018-00153

    WANG Shafei, BAO Yanfei, and LI Yan. The architecture and technology of cognitive electronic warfare[J]. Science in China:Information Sciences, 2018, 48(12): 1603–1613. doi: 10.1360/N112018-00153
    [4]
    VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575(7782): 350–354. doi: 10.1038/s41586-019-1724-z
    [5]
    QIAO Zhiqian, TYREE Z, MUDALIGE P, et al. Hierarchical reinforcement learning method for autonomous vehicle behavior planning[J]. arXiv preprint arXiv: 1911.03799, 2019.
    [6]
    BELLO I, PHAM H, LE Q V, et al. Neural combinatorial optimization with reinforcement learning[C]. The International Conference on Learning Representations, Toulon, France, 2017.
    [7]
    NAPARSTEK O and COHEN K. Deep multi-user reinforcement learning for distributed dynamic spectrum access[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 310–323. doi: 10.1109/TWC.2018.2879433
    [8]
    AMURU S D, TEKIN C, VAN DER SCHAAR M, et al. Jamming bandits—A novel learning method for optimal jamming[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2792–2808. doi: 10.1109/TWC.2015.2510643
    [9]
    AMURU S and BUEHRER R M. Optimal jamming using delayed learning[C]. 2014 IEEE Military Communications Conference, Baltimore, USA, 2014: 1528–1533.
    [10]
    颛孙少帅, 杨俊安, 刘辉, 等. 采用双层强化学习的干扰决策算法[J]. 西安交通大学学报, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010

    ZHUANSUN Shaoshuai, YANG Jun’an, LIU Hui, et al. An algorithm for jamming decision using dual reinforcement learning[J]. Journal of Xi'an Jiaotong University, 2018, 52(2): 63–69. doi: 10.7652/xjtuxb201802010
    [11]
    颛孙少帅, 杨俊安, 刘辉, 等. 基于正强化学习和正交分解的干扰策略选择算法[J]. 系统工程与电子技术, 2018, 40(3): 518–525. doi: 10.3969/j.issn.1001-506X.2018.03.05

    ZHUANSUN Shaoshuai, YANG Jun’an, LIU Hui, et al. Jamming strategy learning based on positive reinforcement learning and orthogonal decomposition[J]. Systems Engineering and Electronics, 2018, 40(3): 518–525. doi: 10.3969/j.issn.1001-506X.2018.03.05
    [12]
    LI Yangyang, XU Yuhua, XU Yitao, et al. Dynamic spectrum anti-jamming in broadband communications: A hierarchical deep reinforcement learning approach[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1616–1619. doi: 10.1109/LWC.2020.2999333
    [13]
    KULKARNI T D, NARASIMHAN K R, SAEEDI A, et al. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation[C]. The 30th Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3675–3683.
    [14]
    RAFATI J and NOELLE D C. Learning representations in model-free hierarchical reinforcement learning[C]. The AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2019: 10009–10010.
    [15]
    FESTA P. A brief introduction to exact, approximation, and heuristic algorithms for solving hard combinatorial optimization problems[C]. 2014 16th International Conference on Transparent Optical Networks, Graz, Austria, 2014: 1–20.
    [16]
    GULCEHRE C, LE PAINE T, SHAHRIARI B, et al. Making efficient use of demonstrations to solve hard exploration problems[C]. The International Conference on Learning Representations, 2020.
    [17]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (1704) PDF downloads(286) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return