Advanced Search
Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
XING Tao, MA Chunming, FENG Liang, LI Shuang, WEI Lideng, LI Jun. An Improved Motion Compensation Algorithm for Range Complex Spatial Variant Doppler SAR Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1059-1066. doi: 10.11999/JEIT210113
Citation: XING Tao, MA Chunming, FENG Liang, LI Shuang, WEI Lideng, LI Jun. An Improved Motion Compensation Algorithm for Range Complex Spatial Variant Doppler SAR Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1059-1066. doi: 10.11999/JEIT210113

An Improved Motion Compensation Algorithm for Range Complex Spatial Variant Doppler SAR Imaging

doi: 10.11999/JEIT210113
Funds:  The National Key Research and Development Program of China (2018YFC0825802)
  • Received Date: 2021-02-01
  • Rev Recd Date: 2021-08-21
  • Available Online: 2021-09-09
  • Publish Date: 2022-03-28
  • The complex spatial variant Doppler along the range dimension has large influence on SAR imaging quality, the normal range Doppler (RD) algorithm is easy to produce the phenomenon of alternating light and dark, image visibility is poor. During azimuth pre-filtering and azimuth pulse compression estimation or calculation the Doppler frequency along range block/gate, in azimuth pre-filtering and azimuth pulse compression, the window function is moved along the azimuth according to Doppler frequency can effectively solve the phenomenon of chiaroscuro, however, this method can not improve the focusing effect in near or far range. Based on the above problems, an improved motion compensation method is proposed in this paper, motion compensation and motion correction are performed by dividing the blocks along the range dimension, collimation of a spatially variable Doppler along range and then azimuth pulse compression is carried out. There is no alternation of light and dark in the proposed method processing results, the image is continuous and complete along the range dimension and has better visibility. At the same time, the image has a good focusing effect at far distance from the range center. The validity of the algorithm is verified by the measured data.
  • loading
  • [1]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 61–69, 141–149.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 61–69, 141–149.
    [2]
    XU Huajian, YANG Zhiwei, TIAN Min, et al. An extended moving target detection approach for high-resolution multichannel SAR-GMTI systems based on enhanced shadow-aided decision[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 715–729. doi: 10.1109/TGRS.2017.2754098
    [3]
    XU Jia, HUANG Zuzhen, WANG Zhirui, et al. Radial velocity retrieval for multichannel SAR moving targets with time-space Doppler deambiguity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 35–48. doi: 10.1109/TGRS.2017.2720692
    [4]
    孙光才, 王裕旗, 高昭昭, 等. 一种基于短合成孔径的双星干涉精确定位方法[J]. 电子与信息学报, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940

    SUN Guangcai, WANG Yuqi, GAO Zhaozhao, et al. A dual satellite interferometric precise localization method based on short synthetic aperture[J]. Journal of Electronics &Information Technology, 2020, 42(2): 472–479. doi: 10.11999/JEIT180940
    [5]
    李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085

    LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
    [6]
    JIN Guodong, DENG Yunkai, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155–6168. doi: 10.1109/TGRS.2019.2904627
    [7]
    ZHU Xiaoxiang, HE Feng, YE Fan, et al. Sidelobe suppression with resolution maintenance for SAR images via sparse representation[J]. Sensors, 2018, 18(5): 1589. doi: 10.3390/s18051589
    [8]
    王宇, 曹运合, 齐晨, 等. 基于高超声速平台前斜视多通道SAR-GMTI杂波抑制方法[J]. 电子与信息学报, 2020, 42(2): 458–464. doi: 10.11999/JEIT181002

    WANG Yu, CAO Yunhe, QI Chen, et al. Multi-channel SAR-GMTI clutter suppression method based on hypersonic platform forward squint[J]. Journal of Electronics &Information Technology, 2020, 42(2): 458–464. doi: 10.11999/JEIT181002
    [9]
    WANG Puyang, ZHANG He, and PATEL V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763–1767. doi: 10.1109/LSP.2017.2758203
    [10]
    CHEN Leping, AN Daoxiang, HUANG Xiaotao, et al. A 3D reconstruction strategy of vehicle outline based on single-pass single-polarization CSAR data[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5545–5554. doi: 10.1109/TIP.2017.2738566
    [11]
    ZHANG Qiang, YUAN Qiangqiang, LI Jie, et al. Learning a dilated residual network for SAR image despeckling[J]. Remote Sensing, 2018, 10(2): 196. doi: 10.3390/rs10020196
    [12]
    安道祥. 高分辨率SAR成像处理技术研究[D]. [博士论文], 国防科学技术大学, 2011.

    AN Daoxiang. Study on the imaging techniques for high resolution SAR systems[D]. [Ph. D. dissertation], National University of Defense Technology, 2011.
    [13]
    孙光才. 多通道波速指向高分辨SAR和动目标成像技术[D]. [博士论文], 西安电子科技大学, 2012.

    SUN Guangcai. Multi-channel beam steering SAR and GMTIm with high resolution[D]. [Ph. D. dissertation], Xidian University, 2012.
    [14]
    陈溅来. 机/星载SAR非线性轨迹信号建模与成像方法研究[D]. [博士论文], 西安电子科技大学, 2018.

    CHEN Jianlai. Study on signal modeling and imaging algorithm for airborne/spaceborne SAR with nonlinear trajectory[D]. [Ph. D. dissertation], Xidian University, 2018.
    [15]
    李燕平, 邢孟道, 保铮. 沿航向运动补偿的几何形变校正[J]. 西安电子科技大学学报:自然科学版, 2006, 33(6): 881–886.

    LI Yanping, XING Mengdao, and BAO Zheng. The correction of geometric distortion for along-track motion compensation[J]. Journal of Xidian University, 2006, 33(6): 881–886.
    [16]
    邢涛, 李军, 王冠勇, 等. 基于非均匀快速傅里叶变换的 SAR 方位向运动补偿算法[J]. 电子与信息学报, 2014, 36(5): 1023–1029.

    XING Tao, LI Jun, WANG Guanyong, et al. An along-track motion compensation algorithm based on Non-Uniform Fast Fourier Transform (NUFFT) for SAR[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1023–1029.
    [17]
    邢涛, 胡庆荣, 李军, 等. 距离走动校正的距离空变分析与补偿[J]. 信号处理, 2015, 31(8): 962–967. doi: 10.3969/j.issn.1003-0530.2015.08.012

    XING Tao, HU Qingrong, LI Jun, et al. Range-dependent range walk correction analysis and compensation[J]. Journal of Signal Processing, 2015, 31(8): 962–967. doi: 10.3969/j.issn.1003-0530.2015.08.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (878) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return