Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Song, LIU Dan, LUO Xiaoyuan, YUAN Yi. Firing Characteristics Analysis of the Fractional-order Extended Hindmarsh-Rose Neuronal Model under Transcranial Magneto-Acoustical Stimulation[J]. Journal of Electronics & Information Technology, 2022, 44(2): 534-542. doi: 10.11999/JEIT210097
Citation: ZHAO Song, LIU Dan, LUO Xiaoyuan, YUAN Yi. Firing Characteristics Analysis of the Fractional-order Extended Hindmarsh-Rose Neuronal Model under Transcranial Magneto-Acoustical Stimulation[J]. Journal of Electronics & Information Technology, 2022, 44(2): 534-542. doi: 10.11999/JEIT210097

Firing Characteristics Analysis of the Fractional-order Extended Hindmarsh-Rose Neuronal Model under Transcranial Magneto-Acoustical Stimulation

doi: 10.11999/JEIT210097
Funds:  The National Natural Science Foundation of China (61873228), The Technology and People's Livelihood Project of Key Research and Development Program of Hebei Province (20377789D), The Key Science and Technology Research Project of Hebei Provincial Health Commission (20210446)
  • Received Date: 2021-01-26
  • Rev Recd Date: 2021-09-16
  • Available Online: 2021-09-29
  • Publish Date: 2022-02-25
  • In this paper, the firing modes and spike frequencies of the fractional-order extended Hindmarsh-Rose(HR) neuronal model under Transcranial Magneto-Acoustical Stimulation (TMAS) are investigated. The TMAS with different parameters generate different alternating current and further have various effect on the firing characteristics of the neuronal model. To address the effect of TMAS on firing characteristics under different ultrasound and magnetic field parameters, the membrane potential curves and bifurcation diagrams are exhibited and analyzed. The results show that the firing mode and spike frequency are strongly dependent on the ultrasonic and magnetic field intensities. It is also found that there is no influence of the ultrasonic frequency on the firing mode, though it changes the firing frequency over a small range. Moreover, compared with the integer-order neuronal model, the fractional-order extended HR neuronal model exhibits more variable firing modes and more complex discharge rhythms. These conclusions reveal the influencing mechanism of TMAS and can be taken as theoretical basis for TMAS experimental and clinical application.
  • loading
  • [1]
    袁毅, 庞娜, 陈玉东, 等. 经颅磁声刺激作用下神经元放电频率适应性的研究[J]. 生物医学工程学杂志, 2017, 34(6): 934–941.

    YUAN Yi, PANG Na, CHEN Yudong, et al. Study of neuronal spike-frequency adaptation with transcranial magneto-acoustical stimulation[J]. Journal of Biomedical Engineering, 2017, 34(6): 934–941.
    [2]
    李江涛, 郑敏军, 曹辉. 经颅磁刺激技术的研究进展[J]. 高电压技术, 2016, 42(4): 1168–1178.

    LI Jiangtao, ZHENG Minjun, and CAO Hui. Research progress in transcranial magnetic stimulation technology[J]. High Voltage Engineering, 2016, 42(4): 1168–1178.
    [3]
    于阳, 李玥, 张广浩, 等. 适用于临床及动物试验的高频重复经颅磁刺激系统设计及其应用[J]. 高电压技术, 2013, 39(1): 181–187. doi: 10.3969/j.issn.1003-6520.2013.01.026

    YU Yang, LI Yue, ZHANG Guanghao, et al. Design and application of high frequency repetitive transcranial magnetic stimulation system for clinical and animal tests[J]. High Voltage Engineering, 2013, 39(1): 181–187. doi: 10.3969/j.issn.1003-6520.2013.01.026
    [4]
    张帅, 史勋, 尹宁, 等. 基于H-H神经元模型的经颅磁声刺激对神经元放电活动的影响[J]. 高电压技术, 2019, 45(4): 1124–1130.

    ZHANG Shuai, SHI Xun, YIN Ning, et al. Effects of transcranial magneto-acoustical stimulation on neuronal firing activities based on H-H neuron model[J]. High Voltage Engineering, 2019, 45(4): 1124–1130.
    [5]
    WANG Yuexiang, FENG Lina, LIU Shikun, et al. Transcranial magneto-acoustic stimulation improves neuroplasticity in hippocampus of Parkinson’s disease model mice[J]. Neurotherapeutics, 2019, 16(4): 1210–1224. doi: 10.1007/s13311-019-00732-5
    [6]
    ZHANG Shuai, CUI Kun, ZHANG Xueying, et al. Effect of transcranial ultrasonic-magnetic stimulation on two types of neural firing behaviors in modified izhikevich model[J]. IEEE Transactions on Magnetics, 2018, 54(3): 5000204.
    [7]
    NATARAJAN A and HASLER J. Hodgkin–Huxley neuron and FPAA dynamics[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(4): 918–926. doi: 10.1109/TBCAS.2018.2837055
    [8]
    YU Hongjie and PENG Jianhua. Chaotic synchronization and control in nonlinear-coupled Hindmarsh–Rose neural systems[J]. Chaos, Solitons & Fractals, 2006, 29(2): 342–348.
    [9]
    KUMAR D, SINGH J, and BALEANU D. A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses[J]. Nonlinear Dynamics, 2018, 91(1): 307–317. doi: 10.1007/s11071-017-3870-x
    [10]
    ERMENTROUT B. Linearization of F-I curves by adaptation[J]. Neural Computation, 1998, 10(7): 1721–1729. doi: 10.1162/089976698300017106
    [11]
    TSUMOTO K, KITAJIMA H, YOSHINAGA T, et al. Bifurcations in Morris–Lecar neuron model[J]. Neurocomputing, 2006, 69(4/6): 293–316.
    [12]
    STOLIAR P, TRANCHANT J, CORRAZE B, et al. A leaky-integrate-and-fire neuron analog realized with a Mott Insulator[J]. Advanced Functional Materials, 2017, 27(11): 1604740. doi: 10.1002/adfm.201604740
    [13]
    MOUJAHID A, D’ANJOU A, TORREALDEA F J, et al. Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons[J]. Chaos, Solitons & Fractals, 2011, 44(11): 929–933.
    [14]
    LÜ Mi, WANG Chunni, REN Guodong, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3): 1479–1490. doi: 10.1007/s11071-016-2773-6
    [15]
    LV Mi and MA Jun. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205: 375–381. doi: 10.1016/j.neucom.2016.05.004
    [16]
    VEPA R. Modelling and estimation of chaotic biological neurons[J]. IFAC Proceedings Volumes, 2009, 42(7): 27–32. doi: 10.3182/20090622-3-UK-3004.00008
    [17]
    RECH P C. Dynamics in the parameter space of a neuron model[J]. Chinese Physics Letters, 2012, 29(6): 060506. doi: 10.1088/0256-307X/29/6/060506
    [18]
    RAJAGOPAL K, KHALAF A J M, PARASTESH F, et al. Dynamical behavior and network analysis of an extended Hindmarsh–Rose neuron model[J]. Nonlinear Dynamics, 2019, 98(1): 477–487. doi: 10.1007/s11071-019-05205-0
    [19]
    LUNDSTROM B N, HIGGS M H, SPAIN W J, et al. Fractional differentiation by neocortical pyramidal neurons[J]. Nature Neuroscience, 2008, 11(11): 1335–1342. doi: 10.1038/nn.2212
    [20]
    ANASTASIO T J. The fractional-order dynamics of brainstem Vestibulo-Oculomotor Neurons[J]. Biological Cybernetics, 1994, 72(1): 69–79. doi: 10.1007/BF00206239
    [21]
    DONG Jun, ZHANG Guangjun, XIE Yong, et al. Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model[J]. Cognitive Neurodynamics, 2014, 8(2): 167–175. doi: 10.1007/s11571-013-9273-x
    [22]
    XIE Yong, KANG Yanmei, LIU Yong, et al. Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons[J]. Science China Technological Sciences, 2014, 57(5): 914–922. doi: 10.1007/s11431-014-5531-3
    [23]
    GIRESSE T A, CREPIN K T, and MARTIN T. Generalized synchronization of the extended Hindmarsh–Rose neuronal model with fractional order derivative[J]. Chaos, Solitons & Fractals, 2019, 118: 311–319.
    [24]
    YUAN Yi, PANG Na, CHEN Yudong, et al. A phase-locking analysis of neuronal firing rhythms with transcranial magneto-acoustical stimulation based on the Hodgkin-Huxley neuron model[J]. Frontiers in Computational Neuroscience, 2017, 11: 1.
    [25]
    YUAN Yi, CHEN Yudong, and LI Xiaoli. Theoretical analysis of transcranial magneto-acoustical stimulation with Hodgkin-Huxley neuron model[J]. Frontiers in Computational Neuroscience, 2016, 10: 35.
    [26]
    LIU Dan, ZHAO Song, LUO Xiaoyuan, et al. Unidirectional synchronization of Hodgkin-Huxley neurons with prescribed performance under transcranial magneto-acoustical simulation[J]. Frontiers in Neuroscience, 2019, 13: 1061. doi: 10.3389/fnins.2019.01061
    [27]
    LIU Dan, ZHAO Song, LUO Xiaoyuan, et al. Synchronization for fractional-order extended Hindmarsh-Rose neuronal models with magneto-acoustical stimulation input[J]. Chaos, Solitons & Fractals, 2021, 144: 110635.
    [28]
    汪芃, 李倩昀, 唐国宁. Hindmarsh-Rose神经元阵列自发产生螺旋波的研究[J]. 物理学报, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140

    WANG Peng, LI Qianyun, and TANG Guoning. Spontaneous generation of spiral wave in the array of Hindmarsh-Rose neurons[J]. Acta Physica Sinica, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [29]
    MENG Fanqi, ZENG Xiaoqin, and WANG Zuolei. Dynamical behavior and synchronization in time-delay fractional-order coupled neurons under electromagnetic radiation[J]. Nonlinear Dynamics, 2019, 95(2): 1615–1625. doi: 10.1007/s11071-018-4648-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (851) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return