Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
WANG Tong, SU Lin, REN Qunyan, WANG Wenbo, JIA Yuqing, MA Li. Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078
Citation: WANG Tong, SU Lin, REN Qunyan, WANG Wenbo, JIA Yuqing, MA Li. Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078

Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism

doi: 10.11999/JEIT210078
Funds:  the National Natural Science Foundation of China (11704396)
  • Received Date: 2021-01-21
  • Accepted Date: 2021-11-05
  • Rev Recd Date: 2021-10-08
  • Available Online: 2021-11-18
  • Publish Date: 2022-02-25
  • The Sound Speed Profiles (SSPs) in sea water have obvious time evolution characteristics, and their prediction can be regarded as a nonlinear time series prediction. Recurrent Neural Networks (RNN), a type of deep neural network designed for sequence modeling, can capture nonlinear relationships flexibly. Attention Mechanism (AM), which selects the most critical information for the current task, can describe the nonlinear relationships in space and temporal dimensions. In this paper, RNN and AM are used to construct a multivariate time series prediction model to learn the historical SSPs and predict the time-varying full-sea SSPs in shallow sea environment. Experiments on real sound speed data show that the proposed method is effective and outperforms other methods, and provides a new idea for the combination of physical model and machine learning in underwater acoustics.
  • loading
  • [1]
    李启虎. 水声学研究进展[J]. 声学学报, 2001, 26(4): 295–301. doi: 10.3321/j.issn:0371-0025.2001.04.002

    LI Qihu. Advances of research work in underwater acoustics[J]. Acta Acustica, 2001, 26(4): 295–301. doi: 10.3321/j.issn:0371-0025.2001.04.002
    [2]
    汪德昭, 尚尔昌. 水声学[M]. 2版. 北京: 科学出版社, 2013: 9.
    [3]
    张建华. 海温预报知识讲座 第一讲 海水温度预报概况[J]. 海洋预报, 2003, 20(4): 81–85. doi: 10.3969/j.issn.1003-0239.2003.04.013

    ZHANG Jianhua. Lectures on sea surface temperature prediction[J]. Marine Forecasts, 2003, 20(4): 81–85. doi: 10.3969/j.issn.1003-0239.2003.04.013
    [4]
    KURAPOV A L, EGBERT G D, MILLER R N, et al. Data assimilation in a Baroclinic coastal ocean model: Ensemble statistics and comparison of methods[J]. Monthly Weather Review, 2002, 130(4): 1009–1025. doi: 10.1175/1520-0493(2002)130<1009:DAIABC>2.0.CO;2
    [5]
    MUNK W, WORCESTER P, and CWUNSCH C. Ocean Acoustic Tomography[M]. Cambridge: Cambridge University Press, 1995.
    [6]
    LEBLANC L R and MIDDLETON F H. An underwater acoustic sound velocity data model[J]. The Journal of the Acoustical Society of America, 1980, 67(6): 2055–2062. doi: 10.1121/1.384448
    [7]
    DAUGHERTY J R and LYNCH J F. Surface wave, internal wave, and source motion effects on matched field processing in a shallow water waveguide[J]. The Journal of the Acoustical Society of America, 1990, 87(6): 2503–2526. doi: 10.1121/1.399098
    [8]
    TOLSTOY A, DIACHOK O, and FRAZER L N. Acoustic tomography via matched field processing[J]. The Journal of the Acoustical Society of America, 1991, 89(3): 1119–1127. doi: 10.1121/1.400647
    [9]
    ZHU Guolei, WANG Yingmin, and WANG Qi. Matched field processing based on Bayesian estimation[J]. Sensors, 2020, 20(5): 1374. doi: 10.3390/s20051374
    [10]
    SHEN Yining, PAN Xiang, ZHENG Zheng, et al. Matched-field geoacoustic inversion based on radial basis function neural network[J]. The Journal of the Acoustical Society of America, 2020, 148(5): 3279–3290. doi: 10.1121/10.0002656
    [11]
    崔宝龙, 徐国军, 笪良龙, 等. 采用小生境遗传算法反演浅海声速剖面研究[J]. 应用声学, 2021, 40(2): 279–286. doi: 10.11684/j.issn.1000-310X.2021.02.016

    CUI Baolong, XU Guojun, DA Lianglong, et al. Shallow sea sound speed profile inversion based on niche genetic algorithm[J]. Applied Acoustics, 2021, 40(2): 279–286. doi: 10.11684/j.issn.1000-310X.2021.02.016
    [12]
    TAROUDAKIS M I and PAPADAKIS J S. A modal inversion scheme for ocean acoustic tomography[J]. Journal of Computational Acoustics, 1993, 1(4): 395–421. doi: 10.1142/S0218396X93000214
    [13]
    SKARSOULIS E K, ATHANASSOULIS G A, and SEND U. Ocean acoustic tomography based on peak arrivals[J]. The Journal of the Acoustical Society of America, 1996, 100(2): 797–813. doi: 10.1121/1.416212
    [14]
    YARDIM C, GERSTOFT P, and HODGKISS W S. Tracking of geoacoustic parameters using Kalman and particle filters[J]. The Journal of the Acoustical Society of America, 2009, 125(2): 746–760. doi: 10.1121/1.3050280
    [15]
    CARRIÈRE O, HERMAND J P, LE GAC J C, et al. Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment[J]. Journal of Marine Systems, 2009, 78 Suppl: S382-S392.
    [16]
    CARRIERE O, HERMAND J P, and CANDY J V. Inversion for time-evolving sound-speed field in a shallow ocean by ensemble Kalman filtering[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 586–602. doi: 10.1109/JOE.2009.2033954
    [17]
    金丽玲, 李建龙, 徐文. 自回归状态空间模型下时变声速剖面跟踪方法[J]. 声学学报, 2016, 41(6): 813–819.

    JIN Liling, LI Jianlong, and XU Wen. Tracking of time-evolving sound speed profiles with the auto-regressive state-space model[J]. Acta Acustica, 2016, 41(6): 813–819.
    [18]
    苏林, 任群言, 庞立臣, 等. 强非线性时间演化声速剖面的序贯反演[J]. 声学学报, 2019, 44(4): 452–462.

    SU Lin, REN Qunyan, PANG Lichen, et al. Sequential inversion of highly nonlinear time-evolving sound speed profiles[J]. Acta Acustica, 2019, 44(4): 452–462.
    [19]
    庞立臣, 胡涛, 傅德龙, 等. 集合卡尔曼滤波在时变声速剖面追踪中的性能分析[J]. 声学学报, 2020, 45(2): 176–188.

    PANG Lichen, HU Tao, FU Delong, et al. Performances of the ensemble Kalman filter on the tracking of time-evolving sound speed profiles[J]. Acta Acustica, 2020, 45(2): 176–188.
    [20]
    LINS I D, DAS CHAGAS MOURA M, SILVA M A, et al. Sea surface temperature prediction via support vector machines combined with particle swarm optimization[C]. International Probabilistic Safety Assessment & Management Conference, Seattle, USA, 2010: 16–29.
    [21]
    TANGANG F T, HSIEH W W, and TANG B. Forecasting the equatorial Pacific sea surface temperatures by neural network models[J]. Climate Dynamics, 1997, 13(2): 135–147. doi: 10.1007/s003820050156
    [22]
    NOWRUZI H and GHASSEMI H. Using artificial neural network to predict velocity of sound in liquid water as a function of ambient temperature, electrical and magnetic fields[J]. Journal of Ocean Engineering and Science, 2016, 1(3): 203–211. doi: 10.1016/j.joes.2016.07.001
    [23]
    JAIN S and ALI M M. Estimation of sound speed profiles using artificial neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 467–470. doi: 10.1109/LGRS.2006.876221
    [24]
    SUN Sijia and ZHAO Hangfang. Sparse representation of sound speed profiles based on dictionary learning[C]. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 2020: 484–488.
    [25]
    ZHANG Qin, WANG Hui, DONG Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745–1749. doi: 10.1109/LGRS.2017.2733548
    [26]
    SARKAR P, JANARDHAN P, and ROY P. Applicability of a long short-term memory deep learning network in sea surface temperature predictions[C]. Earth 1st International Conference on Water Security and Sustainability, Rangpo, Indin, 2019.
    [27]
    SARKAR P P, JANARDHAN P, and ROY P. Prediction of sea surface temperatures using deep learning neural networks[J]. SN Applied Sciences, 2020, 2(8): 1458. doi: 10.1007/s42452-020-03239-3
    [28]
    QIN Yao, SONG Dongjin, CHENG Haifeng, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 2627–2633.
    [29]
    HUANG Siteng, WANG Donglin, WU Xuehan, et al. DSANet: Dual self-attention network for multivariate time series forecasting[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2129–2132.
    [30]
    MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2204–2212.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1026) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return