Citation: | WANG Tong, SU Lin, REN Qunyan, WANG Wenbo, JIA Yuqing, MA Li. Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078 |
[1] |
李启虎. 水声学研究进展[J]. 声学学报, 2001, 26(4): 295–301. doi: 10.3321/j.issn:0371-0025.2001.04.002
LI Qihu. Advances of research work in underwater acoustics[J]. Acta Acustica, 2001, 26(4): 295–301. doi: 10.3321/j.issn:0371-0025.2001.04.002
|
[2] |
汪德昭, 尚尔昌. 水声学[M]. 2版. 北京: 科学出版社, 2013: 9.
|
[3] |
张建华. 海温预报知识讲座 第一讲 海水温度预报概况[J]. 海洋预报, 2003, 20(4): 81–85. doi: 10.3969/j.issn.1003-0239.2003.04.013
ZHANG Jianhua. Lectures on sea surface temperature prediction[J]. Marine Forecasts, 2003, 20(4): 81–85. doi: 10.3969/j.issn.1003-0239.2003.04.013
|
[4] |
KURAPOV A L, EGBERT G D, MILLER R N, et al. Data assimilation in a Baroclinic coastal ocean model: Ensemble statistics and comparison of methods[J]. Monthly Weather Review, 2002, 130(4): 1009–1025. doi: 10.1175/1520-0493(2002)130<1009:DAIABC>2.0.CO;2
|
[5] |
MUNK W, WORCESTER P, and CWUNSCH C. Ocean Acoustic Tomography[M]. Cambridge: Cambridge University Press, 1995.
|
[6] |
LEBLANC L R and MIDDLETON F H. An underwater acoustic sound velocity data model[J]. The Journal of the Acoustical Society of America, 1980, 67(6): 2055–2062. doi: 10.1121/1.384448
|
[7] |
DAUGHERTY J R and LYNCH J F. Surface wave, internal wave, and source motion effects on matched field processing in a shallow water waveguide[J]. The Journal of the Acoustical Society of America, 1990, 87(6): 2503–2526. doi: 10.1121/1.399098
|
[8] |
TOLSTOY A, DIACHOK O, and FRAZER L N. Acoustic tomography via matched field processing[J]. The Journal of the Acoustical Society of America, 1991, 89(3): 1119–1127. doi: 10.1121/1.400647
|
[9] |
ZHU Guolei, WANG Yingmin, and WANG Qi. Matched field processing based on Bayesian estimation[J]. Sensors, 2020, 20(5): 1374. doi: 10.3390/s20051374
|
[10] |
SHEN Yining, PAN Xiang, ZHENG Zheng, et al. Matched-field geoacoustic inversion based on radial basis function neural network[J]. The Journal of the Acoustical Society of America, 2020, 148(5): 3279–3290. doi: 10.1121/10.0002656
|
[11] |
崔宝龙, 徐国军, 笪良龙, 等. 采用小生境遗传算法反演浅海声速剖面研究[J]. 应用声学, 2021, 40(2): 279–286. doi: 10.11684/j.issn.1000-310X.2021.02.016
CUI Baolong, XU Guojun, DA Lianglong, et al. Shallow sea sound speed profile inversion based on niche genetic algorithm[J]. Applied Acoustics, 2021, 40(2): 279–286. doi: 10.11684/j.issn.1000-310X.2021.02.016
|
[12] |
TAROUDAKIS M I and PAPADAKIS J S. A modal inversion scheme for ocean acoustic tomography[J]. Journal of Computational Acoustics, 1993, 1(4): 395–421. doi: 10.1142/S0218396X93000214
|
[13] |
SKARSOULIS E K, ATHANASSOULIS G A, and SEND U. Ocean acoustic tomography based on peak arrivals[J]. The Journal of the Acoustical Society of America, 1996, 100(2): 797–813. doi: 10.1121/1.416212
|
[14] |
YARDIM C, GERSTOFT P, and HODGKISS W S. Tracking of geoacoustic parameters using Kalman and particle filters[J]. The Journal of the Acoustical Society of America, 2009, 125(2): 746–760. doi: 10.1121/1.3050280
|
[15] |
CARRIÈRE O, HERMAND J P, LE GAC J C, et al. Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment[J]. Journal of Marine Systems, 2009, 78 Suppl: S382-S392.
|
[16] |
CARRIERE O, HERMAND J P, and CANDY J V. Inversion for time-evolving sound-speed field in a shallow ocean by ensemble Kalman filtering[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 586–602. doi: 10.1109/JOE.2009.2033954
|
[17] |
金丽玲, 李建龙, 徐文. 自回归状态空间模型下时变声速剖面跟踪方法[J]. 声学学报, 2016, 41(6): 813–819.
JIN Liling, LI Jianlong, and XU Wen. Tracking of time-evolving sound speed profiles with the auto-regressive state-space model[J]. Acta Acustica, 2016, 41(6): 813–819.
|
[18] |
苏林, 任群言, 庞立臣, 等. 强非线性时间演化声速剖面的序贯反演[J]. 声学学报, 2019, 44(4): 452–462.
SU Lin, REN Qunyan, PANG Lichen, et al. Sequential inversion of highly nonlinear time-evolving sound speed profiles[J]. Acta Acustica, 2019, 44(4): 452–462.
|
[19] |
庞立臣, 胡涛, 傅德龙, 等. 集合卡尔曼滤波在时变声速剖面追踪中的性能分析[J]. 声学学报, 2020, 45(2): 176–188.
PANG Lichen, HU Tao, FU Delong, et al. Performances of the ensemble Kalman filter on the tracking of time-evolving sound speed profiles[J]. Acta Acustica, 2020, 45(2): 176–188.
|
[20] |
LINS I D, DAS CHAGAS MOURA M, SILVA M A, et al. Sea surface temperature prediction via support vector machines combined with particle swarm optimization[C]. International Probabilistic Safety Assessment & Management Conference, Seattle, USA, 2010: 16–29.
|
[21] |
TANGANG F T, HSIEH W W, and TANG B. Forecasting the equatorial Pacific sea surface temperatures by neural network models[J]. Climate Dynamics, 1997, 13(2): 135–147. doi: 10.1007/s003820050156
|
[22] |
NOWRUZI H and GHASSEMI H. Using artificial neural network to predict velocity of sound in liquid water as a function of ambient temperature, electrical and magnetic fields[J]. Journal of Ocean Engineering and Science, 2016, 1(3): 203–211. doi: 10.1016/j.joes.2016.07.001
|
[23] |
JAIN S and ALI M M. Estimation of sound speed profiles using artificial neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 467–470. doi: 10.1109/LGRS.2006.876221
|
[24] |
SUN Sijia and ZHAO Hangfang. Sparse representation of sound speed profiles based on dictionary learning[C]. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 2020: 484–488.
|
[25] |
ZHANG Qin, WANG Hui, DONG Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745–1749. doi: 10.1109/LGRS.2017.2733548
|
[26] |
SARKAR P, JANARDHAN P, and ROY P. Applicability of a long short-term memory deep learning network in sea surface temperature predictions[C]. Earth 1st International Conference on Water Security and Sustainability, Rangpo, Indin, 2019.
|
[27] |
SARKAR P P, JANARDHAN P, and ROY P. Prediction of sea surface temperatures using deep learning neural networks[J]. SN Applied Sciences, 2020, 2(8): 1458. doi: 10.1007/s42452-020-03239-3
|
[28] |
QIN Yao, SONG Dongjin, CHENG Haifeng, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 2627–2633.
|
[29] |
HUANG Siteng, WANG Donglin, WU Xuehan, et al. DSANet: Dual self-attention network for multivariate time series forecasting[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2129–2132.
|
[30] |
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2204–2212.
|