Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
WANG Biao, LI Hanqiong, GAO Shijie, ZHANG Mingliang, XU Chen. A Variable Step Size Least Mean p-Power Adaptive Filtering Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(2): 661-667. doi: 10.11999/JEIT210073
Citation: WANG Biao, LI Hanqiong, GAO Shijie, ZHANG Mingliang, XU Chen. A Variable Step Size Least Mean p-Power Adaptive Filtering Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(2): 661-667. doi: 10.11999/JEIT210073

A Variable Step Size Least Mean p-Power Adaptive Filtering Algorithm

doi: 10.11999/JEIT210073
Funds:  The National Natural Science Foundation of China(52071164)
  • Received Date: 2021-05-25
  • Rev Recd Date: 2021-09-03
  • Available Online: 2021-09-17
  • Publish Date: 2022-02-25
  • Under $ \alpha $ stable distribution impulse noise environment, in order to solve the problem that the fixed step-size Least Mean p-Power(LMP) can not satisfy the fast convergence speed and low steady-state error at the same time, a Variable Step-Size LMP (VSS-LMP) adaptive filtering algorithm with robustness to impulse noise is proposed. The algorithm uses an improved modified Gaussian function to adjust the step size, and uses a moving average method to construct a variable step size function, which overcomes the problems of high steady-state error and poor anti-noise performance of the fixed-step algorithm. When the system is disturbed by impulse noise, the VSS-LMP algorithm can maintain a stable step size; When the system is gradually stable, it can generate a small step size to reduce the steady-state error. The simulation results of system identification show that the VSS-LMP algorithm has faster convergence speed and stronger system tracking ability compared with the fixed step size and variable step size algorithm under the condition of $ \alpha $ stable distributed impulse noise.
  • loading
  • [1]
    KWONG R H and JOHNSTON E W. A variable step size LMS algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1633–1642. doi: 10.1109/78.143435
    [2]
    AU W W L and BANKS K. The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay[J]. The Journal of the Acoustical Society of America, 1998, 103(1): 41–47. doi: 10.1121/1.423234
    [3]
    ZHAO Haiquan, LIU Bing, and SONG Pucha. Variable step-size affine projection maximum correntropy criterion adaptive filter with correntropy induced metric for sparse system identification[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(11): 2782–2786. doi: 10.1109/TCSII.2020.2973764
    [4]
    SHAO Min and NIKIAS C L. Signal processing with fractional lower order moments: Stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986–1010. doi: 10.1109/5.231338
    [5]
    BERSHAD N J and BERMUDEZ J C M. A switched variable step size NLMS adaptive filter[J]. Digital Signal Processing, 2020, 101: 102730. doi: 10.1016/j.dsp.2020.102730
    [6]
    付柏成, 赵知劲, 尚俊娜. 一种新的变步长NLMP快速算法[J]. 计算机仿真, 2008, 25(8): 90–92, 112. doi: 10.3969/j.issn.1006-9348.2008.08.024

    FU Baicheng, ZHAO Zhijin, and SHANG Junna. A new variable step-size NLMP fast algorithm[J]. Computer Simulation, 2008, 25(8): 90–92, 112. doi: 10.3969/j.issn.1006-9348.2008.08.024
    [7]
    郝燕玲, 单志明, 吕东泽, 等. 脉冲噪声下基于梯度加权平均的变步长NLMP算法[J]. 宇航学报, 2012, 33(5): 655–660. doi: 10.3873/j.issn.1000-1328.2012.05.019

    HAO Yanling, SHAN Zhiming, LV Dongze, et al. Variable step-size NLMP algorithm with a gradient-based weighted average in impulsive environments[J]. Journal of Astronautics, 2012, 33(5): 655–660. doi: 10.3873/j.issn.1000-1328.2012.05.019
    [8]
    陈思佳, 赵知劲. 用于稀疏系统辨识的变步长加权零吸引最小平均p范数算法[J]. 控制理论与应用, 2020, 37(5): 1103–1108. doi: 10.7641/CTA.2019.90014

    CHEN Sijia and ZHAO Zhijin. Variable step-size reweighted zero attracting least mean p-norm algorithm for sparse system identification[J]. Control Theory &Applications, 2020, 37(5): 1103–1108. doi: 10.7641/CTA.2019.90014
    [9]
    WANG Weihua, ZHAO Jihong, QU Hua, et al. A correntropy inspired variable step-size sign algorithm against impulsive noises[J]. Signal Processing, 2017, 141: 168–175. doi: 10.1016/j.sigpro.2017.05.028
    [10]
    WANG Biao, GAO Shijie, GE Huilin, et al. A variable step size for maximum correntropy criterion algorithm with improved variable kernel width[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(10): 1465–1474. doi: 10.1002/tee.23217
    [11]
    赵集. Alpha稳定分布环境下自适应滤波算法研究[D]. [博士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.000710.

    ZHAO Ji. Research on adaptive filtering algorithms under alpha stable distributed environments[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.000710.
    [12]
    朱晓梅, 朱卫平, 李森. 一种基于分数低阶矩的α稳定分布噪声中频谱感知方案[J]. 南京邮电大学学报:自然科学版, 2014, 34(3): 23–27, 35. doi: 10.3969/j.issn.1673-5439.2014.03.004

    ZHU Xiaomei, ZHU Weiping, and LI Sen. An FLOM-based spectrum sensing scheme in α-stable distributed noise[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science, 2014, 34(3): 23–27, 35. doi: 10.3969/j.issn.1673-5439.2014.03.004
    [13]
    SHI Long, ZHAO Haiquan, and ZAKHAROV Y. An improved variable kernel width for maximum correntropy criterion algorithm[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(7): 1339–1343. doi: 10.1109/TCSII.2018.2880564
    [14]
    杨威, 刘宏清, 黎勇, 等. 冲击噪声下的LMS和RLS联合滤波算法[J]. 西安电子科技大学学报:自然科学版, 2017, 44(2): 165–170. doi: 10.3969/j.issn.1001-2400.2017.02.028

    YANG Wei, LIU Hongqing, LI Yong, et al. Joint estimation algorithms based on LMS and RLS in the presence of impulsive noise[J]. Journal of Xidian University, 2017, 44(2): 165–170. doi: 10.3969/j.issn.1001-2400.2017.02.028
    [15]
    罗小东, 贾振红, 王强. 一种新的变步长LMS自适应滤波算法[J]. 电子学报, 2006, 34(6): 1123–1126. doi: 10.3321/j.issn:0372-2112.2006.06.030

    LUO Xiaodong, JIA Zhenghong, and WANG Qiang. A new variable step size LMS adaptive filtering algorithm[J]. Acta Electronica Sinica, 2006, 34(6): 1123–1126. doi: 10.3321/j.issn:0372-2112.2006.06.030
    [16]
    杜秀群, 冯西安, 杜伟. 一种应用于自适应降噪的变步长LMS算法[J]. 机械科学与技术, 2010, 29(12): 1732–1734, 1738. doi: 10.13433/j.cnki.1003-8728.2010.12.028

    DU Xiuqun, FENF Xi’an, and DU Wei. A variable step size LMS algorithm applied to adaptive noise cancellation[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(12): 1732–1734, 1738. doi: 10.13433/j.cnki.1003-8728.2010.12.028
    [17]
    王平波, 马凯, 武彩. 基于正态分布曲线的分段式变步长LMS算法[J]. 国防科技大学学报, 2020, 42(5): 16–22. doi: 10.11887/j.cn.202005003

    WANG Pingbo, MA Kai, and WU Cai. Segmented variable-step-size LMS algorithm based on normal distribution curve[J]. Journal of National University of Defense Technology, 2020, 42(5): 16–22. doi: 10.11887/j.cn.202005003
    [18]
    CHITRE M A, POTTER J R, and ONG S H. Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 497–503. doi: 10.1109/JOE.2006.875272
    [19]
    王彪, 方涛, 戴跃伟. 时间反转滤波器组多载波水声通信方法[J]. 声学学报, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004

    WANG Biao, FANG Tao, and DAI Yuewei. Method of Time reversal filter bank multicarrier underwater acoustic communication[J]. Acta Acustica, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1382) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return