Citation: | WANG Biao, LI Hanqiong, GAO Shijie, ZHANG Mingliang, XU Chen. A Variable Step Size Least Mean p-Power Adaptive Filtering Algorithm[J]. Journal of Electronics & Information Technology, 2022, 44(2): 661-667. doi: 10.11999/JEIT210073 |
[1] |
KWONG R H and JOHNSTON E W. A variable step size LMS algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1633–1642. doi: 10.1109/78.143435
|
[2] |
AU W W L and BANKS K. The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay[J]. The Journal of the Acoustical Society of America, 1998, 103(1): 41–47. doi: 10.1121/1.423234
|
[3] |
ZHAO Haiquan, LIU Bing, and SONG Pucha. Variable step-size affine projection maximum correntropy criterion adaptive filter with correntropy induced metric for sparse system identification[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(11): 2782–2786. doi: 10.1109/TCSII.2020.2973764
|
[4] |
SHAO Min and NIKIAS C L. Signal processing with fractional lower order moments: Stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986–1010. doi: 10.1109/5.231338
|
[5] |
BERSHAD N J and BERMUDEZ J C M. A switched variable step size NLMS adaptive filter[J]. Digital Signal Processing, 2020, 101: 102730. doi: 10.1016/j.dsp.2020.102730
|
[6] |
付柏成, 赵知劲, 尚俊娜. 一种新的变步长NLMP快速算法[J]. 计算机仿真, 2008, 25(8): 90–92, 112. doi: 10.3969/j.issn.1006-9348.2008.08.024
FU Baicheng, ZHAO Zhijin, and SHANG Junna. A new variable step-size NLMP fast algorithm[J]. Computer Simulation, 2008, 25(8): 90–92, 112. doi: 10.3969/j.issn.1006-9348.2008.08.024
|
[7] |
郝燕玲, 单志明, 吕东泽, 等. 脉冲噪声下基于梯度加权平均的变步长NLMP算法[J]. 宇航学报, 2012, 33(5): 655–660. doi: 10.3873/j.issn.1000-1328.2012.05.019
HAO Yanling, SHAN Zhiming, LV Dongze, et al. Variable step-size NLMP algorithm with a gradient-based weighted average in impulsive environments[J]. Journal of Astronautics, 2012, 33(5): 655–660. doi: 10.3873/j.issn.1000-1328.2012.05.019
|
[8] |
陈思佳, 赵知劲. 用于稀疏系统辨识的变步长加权零吸引最小平均p范数算法[J]. 控制理论与应用, 2020, 37(5): 1103–1108. doi: 10.7641/CTA.2019.90014
CHEN Sijia and ZHAO Zhijin. Variable step-size reweighted zero attracting least mean p-norm algorithm for sparse system identification[J]. Control Theory &Applications, 2020, 37(5): 1103–1108. doi: 10.7641/CTA.2019.90014
|
[9] |
WANG Weihua, ZHAO Jihong, QU Hua, et al. A correntropy inspired variable step-size sign algorithm against impulsive noises[J]. Signal Processing, 2017, 141: 168–175. doi: 10.1016/j.sigpro.2017.05.028
|
[10] |
WANG Biao, GAO Shijie, GE Huilin, et al. A variable step size for maximum correntropy criterion algorithm with improved variable kernel width[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(10): 1465–1474. doi: 10.1002/tee.23217
|
[11] |
赵集. Alpha稳定分布环境下自适应滤波算法研究[D]. [博士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.000710.
ZHAO Ji. Research on adaptive filtering algorithms under alpha stable distributed environments[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.000710.
|
[12] |
朱晓梅, 朱卫平, 李森. 一种基于分数低阶矩的α稳定分布噪声中频谱感知方案[J]. 南京邮电大学学报:自然科学版, 2014, 34(3): 23–27, 35. doi: 10.3969/j.issn.1673-5439.2014.03.004
ZHU Xiaomei, ZHU Weiping, and LI Sen. An FLOM-based spectrum sensing scheme in α-stable distributed noise[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science, 2014, 34(3): 23–27, 35. doi: 10.3969/j.issn.1673-5439.2014.03.004
|
[13] |
SHI Long, ZHAO Haiquan, and ZAKHAROV Y. An improved variable kernel width for maximum correntropy criterion algorithm[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(7): 1339–1343. doi: 10.1109/TCSII.2018.2880564
|
[14] |
杨威, 刘宏清, 黎勇, 等. 冲击噪声下的LMS和RLS联合滤波算法[J]. 西安电子科技大学学报:自然科学版, 2017, 44(2): 165–170. doi: 10.3969/j.issn.1001-2400.2017.02.028
YANG Wei, LIU Hongqing, LI Yong, et al. Joint estimation algorithms based on LMS and RLS in the presence of impulsive noise[J]. Journal of Xidian University, 2017, 44(2): 165–170. doi: 10.3969/j.issn.1001-2400.2017.02.028
|
[15] |
罗小东, 贾振红, 王强. 一种新的变步长LMS自适应滤波算法[J]. 电子学报, 2006, 34(6): 1123–1126. doi: 10.3321/j.issn:0372-2112.2006.06.030
LUO Xiaodong, JIA Zhenghong, and WANG Qiang. A new variable step size LMS adaptive filtering algorithm[J]. Acta Electronica Sinica, 2006, 34(6): 1123–1126. doi: 10.3321/j.issn:0372-2112.2006.06.030
|
[16] |
杜秀群, 冯西安, 杜伟. 一种应用于自适应降噪的变步长LMS算法[J]. 机械科学与技术, 2010, 29(12): 1732–1734, 1738. doi: 10.13433/j.cnki.1003-8728.2010.12.028
DU Xiuqun, FENF Xi’an, and DU Wei. A variable step size LMS algorithm applied to adaptive noise cancellation[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(12): 1732–1734, 1738. doi: 10.13433/j.cnki.1003-8728.2010.12.028
|
[17] |
王平波, 马凯, 武彩. 基于正态分布曲线的分段式变步长LMS算法[J]. 国防科技大学学报, 2020, 42(5): 16–22. doi: 10.11887/j.cn.202005003
WANG Pingbo, MA Kai, and WU Cai. Segmented variable-step-size LMS algorithm based on normal distribution curve[J]. Journal of National University of Defense Technology, 2020, 42(5): 16–22. doi: 10.11887/j.cn.202005003
|
[18] |
CHITRE M A, POTTER J R, and ONG S H. Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2): 497–503. doi: 10.1109/JOE.2006.875272
|
[19] |
王彪, 方涛, 戴跃伟. 时间反转滤波器组多载波水声通信方法[J]. 声学学报, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004
WANG Biao, FANG Tao, and DAI Yuewei. Method of Time reversal filter bank multicarrier underwater acoustic communication[J]. Acta Acustica, 2020, 45(1): 38–44. doi: 10.15949/j.cnki.0371-0025.2020.01.004
|