Citation: | Feng QIN, Yuan GAO, Shuang WU. Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068 |
[1] |
XIAO Pei, DU Pingan, and ZHANG Bingxue. An analytical method for radiated electromagnetic and shielding effectiveness of braided coaxial cable[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1): 121–127. doi: 10.1109/TEMC.2018.2814629
|
[2] |
王亚平, 蔡勖. ALICE实验中同轴电缆的信号传输特性的研究[J]. 核电子学与探测技术, 2006, 26(2): 195–198. doi: 10.3969/j.issn.0258-0934.2006.02.019
WANG Yaping and CAI Xu. Study of signal transmission properties of a coaxial cable in ALICE experiment[J]. Nuclear Electronics &Detection Technology, 2006, 26(2): 195–198. doi: 10.3969/j.issn.0258-0934.2006.02.019
|
[3] |
SATO S, YAMAGUCHI T, NISHIMURA S, et al. Influence of measuring cable on lightning impulse parameters[J]. Electronics and Communications in Japan, 2010, 93(6): 1–7. doi: 10.1002/ecj.10288
|
[4] |
戈弋, 黄华, 袁欢. 温度和机械弯曲引起的同轴电缆相位变化特性[J]. 太赫兹科学与电子信息学报, 2019, 17(4): 621–626. doi: 10.11805/TKYDA201904.0621
GE Yi, HUANG Hua, and YUAN Huan. Phase characteristics of coaxial cable caused by temperature and mechanical bending[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(4): 621–626. doi: 10.11805/TKYDA201904.0621
|
[5] |
贾文超, 董冰, 李林. 同轴电缆形变TDR监测技术的研究与实现[J]. 计算机测量与控制, 2007, 15(10): 1276–1278. doi: 10.3969/j.issn.1671-4598.2007.10.004
JIA Wenchao, DONG Bing, and LI Lin. Research and realization of coaxial-cable deformation TDR monitoring technology[J]. Computer Measurement &Control, 2007, 15(10): 1276–1278. doi: 10.3969/j.issn.1671-4598.2007.10.004
|
[6] |
陈云敏, 梁志刚, 陈仁朋, 等. 有缺陷同轴电缆的时域反射特性及应用[J]. 浙江大学学报: 工学版, 2005, 39(1): 51–56, 64.
CHEN Yunmin, LIANG Zhigang, CHEN Renpeng, et al. Time domain reflectometry property of defective coaxial cable and its applications[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(1): 51–56, 64.
|
[7] |
CHOO J, CHOO J, and KIM Y H. Evaluation of electromagnetic interference from axially ruptured coaxial cable with multiple dielectrics used in nuclear power plants[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 860–869. doi: 10.1109/TEMC.2018.2835665
|
[8] |
渠红光, 李宪优, 田耕, 等. 基于衰减特性的电缆传输畸变软件补偿[J]. 装备指挥技术学院学报, 2010, 21(2): 87–90.
QU Hongguang, LI Xianyou, TIAN Geng, et al. Attenuation compensation by software based on the character of transfers of the cable[J]. Journal of the Academy of Equipment Command &Technology, 2010, 21(2): 87–90.
|
[9] |
付佳斌, 卿燕玲, 卫兵, 等. 同轴电缆测量纳秒脉冲信号衰减的数字补偿[J]. 强激光与粒子束, 2011, 23(10): 2826–2830. doi: 10.3788/HPLPB20112310.2826
FU Jiabin, QING Yanlin, WEI Bing, et al. Numerical compensation for coaxial cable signal degradation[J]. High Power Laser and Particle Beams, 2011, 23(10): 2826–2830. doi: 10.3788/HPLPB20112310.2826
|
[10] |
黄豹. 新的高频同轴电缆补偿原理[J]. 核电子学与探测技术, 1985, 5(4): 193–198.
HUANG Bao. New principle of high frequency coaxial cable equalization[J]. Nuclear Electronics &Detection Technology, 1985, 5(4): 193–198.
|
[11] |
WHALLEY W B. Color-television coaxial cable termination and equalization[J]. SMPTE Journal 1955, 1995, 64(1): 8–12.
|
[12] |
SARKAR T K, TSENG F I, RAO S M, et al. Deconvolution of impulse response from time-limited input and output: Theory and experiment[J]. IEEE Transactions on Instrumentation and Measurement, 1985, IM-34(4): 541–546. doi: 10.1109/TIM.1985.4315400
|
[13] |
王园, 朱江淼. 应用反卷积实现脉冲计量中的信号重构与系统辨识[J]. 信号处理, 2013, 29(4): 532–535. doi: 10.3969/j.issn.1003-0530.2013.04.017
WANG Yuan and ZHU Jiangmiao. Signal reconstruction and system identification using the deconvolution in pulse metrology[J]. Signal Processing, 2013, 29(4): 532–535. doi: 10.3969/j.issn.1003-0530.2013.04.017
|
[14] |
THOMPSON A M and KAY J. On some Bayesian choices of regularization parameter in image restoration[J]. Inverse Problems, 1993, 9(6): 749–761. doi: 10.1088/0266-5611/9/6/011
|
[15] |
YAN Gang and SUN Hao. A non-negative Bayesian learning method for impact force reconstruction[J]. Journal of Sound and Vibration, 2019, 457: 354–367. doi: 10.1016/j.jsv.2019.06.013
|
[16] |
骆睿, 刘莉, 佟瑞, 等. 基于Tikhonov正则化的高分辨率群时延测量与计算方法[J]. 电子学报, 2019, 47(5): 1044–1048. doi: 10.3969/j.issn.0372-2112.2019.05.010
LUO Rui, LIU Li, TONG Rui, et al. High-resolution group delay measurement and calculation method based on Tikhonov regularization[J]. Acta Electronica Sinica, 2019, 47(5): 1044–1048. doi: 10.3969/j.issn.0372-2112.2019.05.010
|
[17] |
韩玉兵, 吴乐南, 张冬青. 基于正则化处理的超分辨率重建[J]. 电子与信息学报, 2007, 29(7): 1713–1716.
HAN Yubing, WU Lenan, and ZHANG Dongqing. Super-resolution reconstruction based on regularization[J]. Journal of Electronics &Information Technology, 2007, 29(7): 1713–1716.
|
[18] |
王鹏宇, 宋千, 周智敏. 基于多测量动态聚类的压缩感知增强成像方法[J]. 电子与信息学报, 2013, 35(11): 2664–2671.
WANG Pengyu, SONG Qian, and ZHOU Zhimin. Enhanced compressive imaging approach based on multi-measurement and dynamic clustering[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2664–2671.
|
[19] |
JOHNSTON P R and GULRAJANI R M. Selecting the corner in the L-curve approach to Tikhonov regularization[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293–1296. doi: 10.1109/10.867966
|
[20] |
王师萍. 带非负限制的增广Tikhonov正则化方法[D]. [硕士论文], 上海交通大学, 2010.
WANG Shiping. Augmented Tikhonov regularization with nonnegative constraints[D]. [Master dissertation], Shanghai Jiao Tong University, 2010.
|
[21] |
WANG Jingbo and ZABARAS N. Hierarchical Bayesian models for inverse problems in heat conduction[J]. Inverse Problems, 2005, 21(1): 183–206. doi: 10.1088/0266-5611/21/1/012
|
[22] |
JIN Bangti and ZOU Jun. A Bayesian inference approach to the ill-posed Cauchy problem of steady-state heat conduction[J]. International Journal for Numerical Methods in Engineering, 2008, 76(4): 521–544. doi: 10.1002/nme.2350
|
[23] |
JIN Bangti and ZOU Jun. Augmented Tikhonov regularization[J]. Inverse Problems, 2009, 25(2): 025001. doi: 10.1088/0266-5611/25/2/025001
|