Advanced Search
Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Feng QIN, Yuan GAO, Shuang WU. Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068
Citation: Feng QIN, Yuan GAO, Shuang WU. Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference[J]. Journal of Electronics & Information Technology, 2021, 43(8): 2199-2206. doi: 10.11999/JEIT210068

Signal Compensation of Coaxial Cable Based on Modified Non-negative Tikhonov Regularization Method within Bayesian Inference

doi: 10.11999/JEIT210068
Funds:  Foundation of Key Laboratory of Science and Technology on Complex Electromagnetic Environment, China Academy of Engineering Physics (FZSYS-02)
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-03-31
  • Available Online: 2021-04-16
  • Publish Date: 2021-08-10
  • With the increase of signal frequency, bandwidth and transmission distance, the signal distortion problem brought by the coaxial cable becomes serious and can not be ignored. Specifically, if the coaxial cable is accidentally squeezed, stretched or folded during use, the signal distortion problem will become more serious. Herein, a modified signal compensation method is proposed based on the non-negative Tikhonov regularization method with Bayesian inference. This method can effectively avoid the ill-conditioned matrix problem in the inverse analysis. The input signal can be reconstructed by using impulse response function of coaxial cable and measured output signal. Three different types of pulse signals, i.e., double exponential pulse signal, modulated square wave signal, and bipolar pulse signal, transmitted in a 15 m extruded coaxial cable are compensated. The results show that this method can achieve excellent compensation effect, and the deviation between the compensated signal and the input signal is far lower than that of typical attenuation compensation method. Moreover, the modified method exhibits strong robustness. When the signal-to-noise ratio is larger than 30 dB, it can maintain good stability.
  • loading
  • [1]
    XIAO Pei, DU Pingan, and ZHANG Bingxue. An analytical method for radiated electromagnetic and shielding effectiveness of braided coaxial cable[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(1): 121–127. doi: 10.1109/TEMC.2018.2814629
    [2]
    王亚平, 蔡勖. ALICE实验中同轴电缆的信号传输特性的研究[J]. 核电子学与探测技术, 2006, 26(2): 195–198. doi: 10.3969/j.issn.0258-0934.2006.02.019

    WANG Yaping and CAI Xu. Study of signal transmission properties of a coaxial cable in ALICE experiment[J]. Nuclear Electronics &Detection Technology, 2006, 26(2): 195–198. doi: 10.3969/j.issn.0258-0934.2006.02.019
    [3]
    SATO S, YAMAGUCHI T, NISHIMURA S, et al. Influence of measuring cable on lightning impulse parameters[J]. Electronics and Communications in Japan, 2010, 93(6): 1–7. doi: 10.1002/ecj.10288
    [4]
    戈弋, 黄华, 袁欢. 温度和机械弯曲引起的同轴电缆相位变化特性[J]. 太赫兹科学与电子信息学报, 2019, 17(4): 621–626. doi: 10.11805/TKYDA201904.0621

    GE Yi, HUANG Hua, and YUAN Huan. Phase characteristics of coaxial cable caused by temperature and mechanical bending[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(4): 621–626. doi: 10.11805/TKYDA201904.0621
    [5]
    贾文超, 董冰, 李林. 同轴电缆形变TDR监测技术的研究与实现[J]. 计算机测量与控制, 2007, 15(10): 1276–1278. doi: 10.3969/j.issn.1671-4598.2007.10.004

    JIA Wenchao, DONG Bing, and LI Lin. Research and realization of coaxial-cable deformation TDR monitoring technology[J]. Computer Measurement &Control, 2007, 15(10): 1276–1278. doi: 10.3969/j.issn.1671-4598.2007.10.004
    [6]
    陈云敏, 梁志刚, 陈仁朋, 等. 有缺陷同轴电缆的时域反射特性及应用[J]. 浙江大学学报: 工学版, 2005, 39(1): 51–56, 64.

    CHEN Yunmin, LIANG Zhigang, CHEN Renpeng, et al. Time domain reflectometry property of defective coaxial cable and its applications[J]. Journal of Zhejiang University:Engineering Science, 2005, 39(1): 51–56, 64.
    [7]
    CHOO J, CHOO J, and KIM Y H. Evaluation of electromagnetic interference from axially ruptured coaxial cable with multiple dielectrics used in nuclear power plants[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(3): 860–869. doi: 10.1109/TEMC.2018.2835665
    [8]
    渠红光, 李宪优, 田耕, 等. 基于衰减特性的电缆传输畸变软件补偿[J]. 装备指挥技术学院学报, 2010, 21(2): 87–90.

    QU Hongguang, LI Xianyou, TIAN Geng, et al. Attenuation compensation by software based on the character of transfers of the cable[J]. Journal of the Academy of Equipment Command &Technology, 2010, 21(2): 87–90.
    [9]
    付佳斌, 卿燕玲, 卫兵, 等. 同轴电缆测量纳秒脉冲信号衰减的数字补偿[J]. 强激光与粒子束, 2011, 23(10): 2826–2830. doi: 10.3788/HPLPB20112310.2826

    FU Jiabin, QING Yanlin, WEI Bing, et al. Numerical compensation for coaxial cable signal degradation[J]. High Power Laser and Particle Beams, 2011, 23(10): 2826–2830. doi: 10.3788/HPLPB20112310.2826
    [10]
    黄豹. 新的高频同轴电缆补偿原理[J]. 核电子学与探测技术, 1985, 5(4): 193–198.

    HUANG Bao. New principle of high frequency coaxial cable equalization[J]. Nuclear Electronics &Detection Technology, 1985, 5(4): 193–198.
    [11]
    WHALLEY W B. Color-television coaxial cable termination and equalization[J]. SMPTE Journal 1955, 1995, 64(1): 8–12.
    [12]
    SARKAR T K, TSENG F I, RAO S M, et al. Deconvolution of impulse response from time-limited input and output: Theory and experiment[J]. IEEE Transactions on Instrumentation and Measurement, 1985, IM-34(4): 541–546. doi: 10.1109/TIM.1985.4315400
    [13]
    王园, 朱江淼. 应用反卷积实现脉冲计量中的信号重构与系统辨识[J]. 信号处理, 2013, 29(4): 532–535. doi: 10.3969/j.issn.1003-0530.2013.04.017

    WANG Yuan and ZHU Jiangmiao. Signal reconstruction and system identification using the deconvolution in pulse metrology[J]. Signal Processing, 2013, 29(4): 532–535. doi: 10.3969/j.issn.1003-0530.2013.04.017
    [14]
    THOMPSON A M and KAY J. On some Bayesian choices of regularization parameter in image restoration[J]. Inverse Problems, 1993, 9(6): 749–761. doi: 10.1088/0266-5611/9/6/011
    [15]
    YAN Gang and SUN Hao. A non-negative Bayesian learning method for impact force reconstruction[J]. Journal of Sound and Vibration, 2019, 457: 354–367. doi: 10.1016/j.jsv.2019.06.013
    [16]
    骆睿, 刘莉, 佟瑞, 等. 基于Tikhonov正则化的高分辨率群时延测量与计算方法[J]. 电子学报, 2019, 47(5): 1044–1048. doi: 10.3969/j.issn.0372-2112.2019.05.010

    LUO Rui, LIU Li, TONG Rui, et al. High-resolution group delay measurement and calculation method based on Tikhonov regularization[J]. Acta Electronica Sinica, 2019, 47(5): 1044–1048. doi: 10.3969/j.issn.0372-2112.2019.05.010
    [17]
    韩玉兵, 吴乐南, 张冬青. 基于正则化处理的超分辨率重建[J]. 电子与信息学报, 2007, 29(7): 1713–1716.

    HAN Yubing, WU Lenan, and ZHANG Dongqing. Super-resolution reconstruction based on regularization[J]. Journal of Electronics &Information Technology, 2007, 29(7): 1713–1716.
    [18]
    王鹏宇, 宋千, 周智敏. 基于多测量动态聚类的压缩感知增强成像方法[J]. 电子与信息学报, 2013, 35(11): 2664–2671.

    WANG Pengyu, SONG Qian, and ZHOU Zhimin. Enhanced compressive imaging approach based on multi-measurement and dynamic clustering[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2664–2671.
    [19]
    JOHNSTON P R and GULRAJANI R M. Selecting the corner in the L-curve approach to Tikhonov regularization[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1293–1296. doi: 10.1109/10.867966
    [20]
    王师萍. 带非负限制的增广Tikhonov正则化方法[D]. [硕士论文], 上海交通大学, 2010.

    WANG Shiping. Augmented Tikhonov regularization with nonnegative constraints[D]. [Master dissertation], Shanghai Jiao Tong University, 2010.
    [21]
    WANG Jingbo and ZABARAS N. Hierarchical Bayesian models for inverse problems in heat conduction[J]. Inverse Problems, 2005, 21(1): 183–206. doi: 10.1088/0266-5611/21/1/012
    [22]
    JIN Bangti and ZOU Jun. A Bayesian inference approach to the ill-posed Cauchy problem of steady-state heat conduction[J]. International Journal for Numerical Methods in Engineering, 2008, 76(4): 521–544. doi: 10.1002/nme.2350
    [23]
    JIN Bangti and ZOU Jun. Augmented Tikhonov regularization[J]. Inverse Problems, 2009, 25(2): 025001. doi: 10.1088/0266-5611/25/2/025001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (960) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return