Citation: | QU Xinyuan, XU Yu, HUANG Zhihong, CAI Gang, FANG Zhen. A Parallelism Strategy Optimization Search Algorithm Based on Three-dimensional Deformable CNN Acceleration Architecture[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1503-1512. doi: 10.11999/JEIT210059 |
[1] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
|
[2] |
QU Xinyuan, HUANG Zhihong, XU Yu, et al. Cheetah: An accurate assessment mechanism and a high-throughput acceleration architecture oriented toward resource efficiency[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(5): 878–891. doi: 10.1109/TCAD.2020.3011650
|
[3] |
REGGIANI E, RABOZZI M, NESTOROV A M, et al. Pareto optimal design space exploration for accelerated CNN on FPGA[C]. 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro, Brazil, 2019: 107–114. doi: 10.1109/IPDPSW.2019.00028.
|
[4] |
YU Xiaoyu, WANG Yuwei, MIAO Jie, et al. A data-center FPGA acceleration platform for convolutional neural networks[C]. 2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 2019: 151–158. doi: 10.1109/FPL.2019.00032.
|
[5] |
LIU Zhiqiang, CHOW P, XU Jinwei, et al. A uniform architecture design for accelerating 2D and 3D CNNs on FPGAs[J]. Electronics, 2019, 8(1): 65. doi: 10.3390/electronics8010065
|
[6] |
LI Huimin, FAN Xitian, JIAO Li, et al. A high performance FPGA-based accelerator for large-scale convolutional neural networks[C]. 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Swiss, 2016: 1–9. doi: 10.1109/FPL.2016.7577308.
|
[7] |
QIU Jiantao, WANG Jie, YAO Song, et al. Going deeper with embedded FPGA platform for convolutional neural network[C]. The 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, California, USA, 2016: 26–35.
|
[8] |
ZHANG Xiaofan, WANG Junsong, ZHU Chao, et al. DNNBuilder: An automated tool for building high-performance DNN hardware accelerators for FPGAs[C]. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, USA, 2018: 1–8. doi: 10.1145/3240765.3240801.
|
[9] |
LIU Zhiqiang, DOU Yong, JIANG Jingfei, et al. Automatic code generation of convolutional neural networks in FPGA implementation[C]. 2016 International Conference on Field-Programmable Technology (FPT), Xi’an, China, 2016: 61–68. doi: 10.1109/FPT.2016.7929190.
|
[10] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
|
[11] |
MA Yufei, CAO Yu, VRUDHULA S, et al. Optimizing the convolution operation to accelerate deep neural networks on FPGA[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(7): 1354–1367. doi: 10.1109/TVLSI.2018.2815603
|
[12] |
GUO Kaiyuan, SUI Lingzhi, QIU Jiantao, et al. Angel-Eye: A complete design flow for mapping CNN onto embedded FPGA[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(1): 35–47. doi: 10.1109/TCAD.2017.2705069
|
[13] |
ZHANG Chen, SUN Guangyu, FANG Zhenman, et al. Caffeine: Toward uniformed representation and acceleration for deep convolutional neural networks[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(11): 2072–2085. doi: 10.1109/TCAD.2017.2785257
|
[14] |
ZHANG Jialiang and LI Jing. Improving the performance of OpenCL-based FPGA accelerator for convolutional neural network[C]. The 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, California, USA, 2017: 25–34. doi: 10.1145/3020078.3021698.
|
[15] |
LIU Zhiqiang, DOU Yong, JIANG Jingfei, et al. Throughput-optimized FPGA accelerator for deep convolutional neural networks[J]. ACM Transactions on Reconfigurable Technology and Systems, 2017, 10(3): 17. doi: 10.1145/3079758
|