Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
LI Yingsong, LIANG Tao, ZHANG Xiangkun, JIANG Jingshan. Lawson-norm Constrained Generalized Lncosh Based Adaptive Algorithm for Sparse System Identification[J]. Journal of Electronics & Information Technology, 2022, 44(2): 654-660. doi: 10.11999/JEIT210057
Citation: LI Yingsong, LIANG Tao, ZHANG Xiangkun, JIANG Jingshan. Lawson-norm Constrained Generalized Lncosh Based Adaptive Algorithm for Sparse System Identification[J]. Journal of Electronics & Information Technology, 2022, 44(2): 654-660. doi: 10.11999/JEIT210057

Lawson-norm Constrained Generalized Lncosh Based Adaptive Algorithm for Sparse System Identification

doi: 10.11999/JEIT210057
  • Received Date: 2021-01-18
  • Rev Recd Date: 2021-07-15
  • Available Online: 2021-07-19
  • Publish Date: 2022-02-25
  • A generalized Lawson-lncosh adaptive filtering algorithm for sparse system identification is proposed. The proposed algorithm is derived by constructing a new cost function consisted of Lawson-norm of system coefficient vector and lncosh function of instantaneous error. And the Lawson-norm constraint introduces a parameter p which can realize the dynamic adjustment of sparsity. The proposed algorithm can improve the convergence speed and reduce the steady-state error for sqarse system identification, where the Lncosh function of the error has the property of combating impulsive noise. Then, the range of the step-size and effect of parameter p on the proposed algorithm are analyzed. Computer simulation results show that the proposed algorithm has superior performance compared with other existing algorithms with Gaussian and colored input signals and the sparsity constraint for the proposed algorithm is controllable.
  • loading
  • [1]
    DINIZ P S R. Adaptive Filtering Algorithms and Practical Implementation[M]. 3rd ed. New York: Springer, 2008: 77–126.
    [2]
    WIDROW B and STEARNS S D. Adaptive Signal Processing[M]. New Jersey: Prentice Hall, 1985: 99–116.
    [3]
    CHEN Yilun, GU Yuantao, and HERO A O. Sparse LMS for system identification[C]. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 3125–3128.
    [4]
    曲庆, 金坚, 谷源涛. 用于稀疏系统辨识的改进l0-LMS算法[J]. 电子与信息学报, 2011, 33(3): 604–609.

    QU Qing, JIN Jian, and GU Yuantao. An improved l0-LMS algorithm for sparse system identification[J]. Journal of Electronics &Information Technology, 2011, 33(3): 604–609.
    [5]
    GU Yuantao, JIN Jian, and MEI Shunliang. l0 norm constraint LMS algorithm for sparse system identification[J]. IEEE Signal Processing Letters, 2009, 16(9): 774–777. doi: 10.1109/LSP.2009.2024736
    [6]
    WANG Chengcheng, ZHANG Yonggang, WEI Ye, et al. A new l0-LMS algorithm with adaptive zero attractor[J]. IEEE Communications Letters, 2015, 19(12): 2150–2153. doi: 10.1109/LCOMM.2015.2490665
    [7]
    ZHAO Haiquan and WANG Wenyuan. Volterra system identification under maximum correntropy criteria in impulsive environments[C]. The 2016 35th Chinese Control Conference (CCC), Chengdu, China, 2016: 5067–5070.
    [8]
    LI Yingsong, JIANG Zhengxiong, SHI Wanlu, et al. Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(11): 1915–1919. doi: 10.1109/TCSII.2019.2891654
    [9]
    SUN Zeyang, LI Yingsong, JIANG Zhengxiong, et al. Active coefficient detection maximum correntropy criterion algorithm for sparse channel estimation under non-Gaussian environments[J]. IEEE Access, 2019, 7: 151867–151877. doi: 10.1109/ACCESS.2019.2924028
    [10]
    LIU Chang and JIANG Ming. Robust adaptive filter with lncosh cost[J]. Signal Processing, 2020, 168: 107348. doi: 10.1016/j.sigpro.2019.107348
    [11]
    SUN Zeyang, LI Yingsong, LI Yibing, et al. Steady-state mean-square error analysis for non-negative least lncosh algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(6): 2237–2241. doi: 10.1109/TCSII.2020.3048287
    [12]
    MSALMAN M S, ELSAYED F, RASHDAN M, et al. A zero-attracting sparse lncosh adaptive algorithm[C]. The 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 2020: 565–568. doi: 10.1109/ELNANO50318.2020.9088847.
    [13]
    SHANG Wenjing, XUE Wei, LI Yingsong, et al. Improved primal–dual interior-point method using the Lawson-norm for inverse problems[J]. IEEE Access, 2020, 8: 41053–41061. doi: 10.1109/ACCESS.2020.2976727
    [14]
    KOH T and POWERS E. Efficient methods of estimate correlation functions of Gaussian processes and their performance analysis[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 1032–1035. doi: 10.1109/TASSP.1985.1164623
    [15]
    金坚, 谷源涛, 梅顺良. 用于稀疏系统辨识的零吸引最小均方算法[J]. 清华大学学报: 自然科学版, 2010, 50(10): 1656–1659. doi: 10.16511/j.cnki.qhdxxb.2010.10.009

    JIN Jian, GU Yuantao, and MEI Shunliang. Adaptive algorithm for sparse system identification: Zero-attracting LMS[J]. Journal of Tsinghua University:Science &Technology, 2010, 50(10): 1656–1659. doi: 10.16511/j.cnki.qhdxxb.2010.10.009
    [16]
    DAS R L and NARWARIA M. Lorentzian based adaptive filters for impulsive noise environments[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(6): 1529–1539. doi: 10.1109/TCSI.2017.2667705
    [17]
    QIAN Guobing, WANG Shiyuan, and IU H H C. Maximum total complex correntropy for adaptive filter[J]. IEEE Transactions on Signal Processing, 2020, 68: 978–989. doi: 10.1109/TSP.2020.2969042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1298) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return