Citation: | WANG Yue, BAI Xueru, ZHOU Feng. High-resolution Inverse Synthetic Aperture Radar Imaging with Sparse Stepped-frequency Chirp Signals under Low Signal to Noise Ratio[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1034-1043. doi: 10.11999/JEIT210056 |
[1] |
BAI Xueru, ZHOU Xuening, ZHANG Feng, et al. Robust pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9912–9927. doi: 10.1109/TGRS.2019.2930112
|
[2] |
王天云, 陆新飞, 孙麟, 等. 基于贝叶斯压缩感知的ISAR自聚焦成像[J]. 电子与信息学报, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235
WANG Tianyun, LU Xinfei, SUN Lin, et al. An autofocus imaging method for ISAR based on Bayesian compressive sensing[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2719–2726. doi: 10.11999/JEIT150235
|
[3] |
LUO Ying, ZHANG Qun, QIU Chengwei, et al. Micro-Doppler effect analysis and feature extraction in ISAR imaging with stepped-frequency chirp signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2087–2098. doi: 10.1109/TGRS.2009.2034367
|
[4] |
ZHANG Lei, XING Mengdao, QIU Chengwei, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3824–3838. doi: 10.1109/TGRS.2010.2048575
|
[5] |
FU Wei, JIANG Defu, GAO Yiyue, et al. An adaptive optimal waveform design algorithm based on frequency-stepped chirp signal[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 892–899. doi: 10.1049/iet-rsn.2018.5410
|
[6] |
WEI Shaopeng, ZHANG Lei, MA Hui, et al. Sparse frequency waveform optimization for high-resolution ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 546–566. doi: 10.1109/TGRS.2019.2937965
|
[7] |
JEONG H R, KIM H T, and KIM K T. Application of subarray averaging and entropy minimization algorithm to stepped-frequency ISAR autofocus[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(4): 1144–1154. doi: 10.1109/TAP.2008.919208
|
[8] |
LIU Yabo, XING Mengdao, ZHANG Leiyong, et al. Novel range profile synthesis algorithm for linearly stepped-frequency modulated inversed synthetic aperture radar imaging of remote manoeuvring target[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 496–506. doi: 10.1049/iet-rsn.2010.0013
|
[9] |
LIAO Zhikun, HU Jiemin, LU Dawei, et al. Motion analysis and compensation method for random stepped frequency radar using the pseudorandom code[J]. IEEE Access, 2018, 6: 57643–57654. doi: 10.1109/ACCESS.2018.2873784
|
[10] |
KANG M S, LEE S J, LEE S H, et al. ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5043–5056. doi: 10.1109/TIP.2017.2728182
|
[11] |
李瑞, 张群, 苏令华, 等. 基于稀疏贝叶斯学习的双基雷达关联成像[J]. 电子与信息学报, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933
LI Rui, ZHANG Qun, SU Linghua, et al. Bistatic radar coincidence imaging based on sparse Bayesian learning[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2865–2872. doi: 10.11999/JEIT180933
|
[12] |
BAI Xueru, ZHANG Yu, and ZHOU Feng. High-resolution radar imaging in complex environments based on Bayesian learning with mixture models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 972–984. doi: 10.1109/TGRS.2018.2863743
|
[13] |
LI Yuanyuan, FU Yaowen, and ZHANG Wenpeng. High-resolution distributed ISAR imaging by OMP method[J]. The Journal of Engineering, 2019, 2019(19): 6138–6142. doi: 10.1049/joe.2019.0380
|
[14] |
ZHU Feng, ZHANG Qun, LEI Qiang, et al. Reconstruction of moving target’s HRRP using sparse frequency-stepped chirp signal[J]. IEEE Sensors Journal, 2011, 11(10): 2327–2334. doi: 10.1109/JSEN.2011.2136375
|
[15] |
ZHANG Lei, QIAO Zhijun, XING Mengdao, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4630–4651. doi: 10.1109/TGRS.2011.2151865
|
[16] |
ZHANG Shuanghui, LIU Yongxiang, LI Xiang, et al. Bayesian high resolution range profile reconstruction of high-speed moving target from under-sampled data[J]. IEEE Transactions on Image Processing, 2020, 29: 5110–5120. doi: 10.1109/TIP.2020.2980149
|
[17] |
NING Yu, BAI Xueru, ZHOU Feng, et al. Method for inverse synthetic aperture radar imaging of space debris using improved genetic algorithm[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 812–821. doi: 10.1049/iet-rsn.2016.0048
|
[18] |
SUN Lin and CHEN Weidong. Improved Bayesian ISAR imaging by learning the local structures of the target scene[J]. IEEE Sensors Journal, 2019, 19(19): 8865–8877. doi: 10.1109/JSEN.2019.2919572
|
[19] |
ZHOU Feng, BAI Xueru, XING Mengdao, et al. Analysis of wide-angle radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 449–457. doi: 10.1049/iet-rsn.2010.0076
|
[20] |
杨磊, 夏亚波, 毛欣瑶, 等. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292
YANG Lei, XIA Yabo, MAO Xinyao, et al. Sparse ISAR imaging algorithm based on Bayesian-lasso[J]. Journal of Electronics &Information Technology, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292
|
1. | 任志敏,曾文军,张良. 一种基于图片边缘轮廓的信息隐藏方法. 山西电子技术. 2022(04): 5-8 . ![]() | |
2. | 王海龙,柳林,纪文璐. 改进插值及择优阈值Canny算法的边缘检测. 计算机仿真. 2020(05): 394-398 . ![]() | |
3. | 吴翰,江巨浪. 基于边缘检测的高斯噪声滤波算法. 安庆师范大学学报(自然科学版). 2018(01): 38-40+50 . ![]() | |
4. | 刘应红,孙树亮. 基于汉明码和Logistic-正弦映射的图像隐写. 郑州大学学报(理学版). 2018(03): 22-26 . ![]() | |
5. | 宋晓峰,林少锋,韩鹍,寇万里. 图像自适应隐写和隐写分析技术进展. 电子信息对抗技术. 2017(01): 70-76 . ![]() | |
6. | 汤光明,边媛,韦大伟,高瞻瞻,朱垚臻. 一种动态更新失真代价的自适应±k隐写算法. 电子与信息学报. 2017(01): 58-65 . ![]() | |
7. | 王丽娜,谭选择,徐一波,翟黎明. 基于纹理复杂度的JPEG图像自适应隐写. 武汉大学学报(理学版). 2017(05): 421-426 . ![]() | |
8. | 谢印庆,姜莉,王鲁云,黄超,刘婷. 一种快速车流量检测算法. 哈尔滨理工大学学报. 2016(04): 19-24 . ![]() | |
9. | 王昂. 海上舰艇作战虚拟视景图像系统仿真研究. 计算机仿真. 2016(04): 419-423 . ![]() | |
10. | 李宁波,潘峰,李军,李秀广. 基于S-UNIWARD的图像自适应空域隐写术. 计算机工程与设计. 2016(10): 2627-2631 . ![]() |