Citation: | GE Yun, MA Lin, YE Famao, CHU Jun. Remote Sensing Image Retrieval Based on Multi-scale Pooling and Norm Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 543-551. doi: 10.11999/JEIT210052 |
[1] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, arXiv: 1409.1556, 2014.
|
[2] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770-778.
|
[3] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
|
[4] |
叶发茂, 董萌, 罗威, 等. 基于卷积神经网络和重排序的农业遥感图像检索[J]. 农业工程学报, 2019, 35(15): 138–145. doi: 10.11975/j.issn.1002-6819.2019.15.018
YE Famao, DONG Meng, LUO Wei, et al. Agricultural remote sensing image retrieval based on convolutional neural network and reranking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(15): 138–145. doi: 10.11975/j.issn.1002-6819.2019.15.018
|
[5] |
LI Yansheng, ZHANG Yongjun, HUANG Xin, et al. Large-scale remote sensing image retrieval by deep hashing neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 950–965. doi: 10.1109/TGRS.2017.2756911
|
[6] |
ROY S, SANGINETO E, DEMIR B, et al. Metric-learning-based deep hashing network for content-based retrieval of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 226–230. doi: 10.1109/LGRS.2020.2974629
|
[7] |
彭晏飞, 宋晓男, 武宏, 等. 结合深度学习与相关反馈的遥感图像检索[J]. 中国图象图形学报, 2019, 24(3): 420–434. doi: 10.11834/jig.180384
PENG Yanfei, SONG Xiaonan, WU Hong, et al. Remote sensing image retrieval combined with deep learning and relevance feedback[J]. Journal of Image and Graphics, 2019, 24(3): 420–434. doi: 10.11834/jig.180384
|
[8] |
YE Famao, ZHAO Xuqing, LUO Wei, et al. Query-adaptive remote sensing image retrieval based on image rank similarity and image-to-query class similarity[J]. IEEE Access, 2020, 8: 116824–116839. doi: 10.1109/ACCESS.2020.3004360
|
[9] |
MA Chenhui, MU Xiaodong, and SHA Dexuan. Multi-layers feature fusion of convolutional neural network for scene classification of remote sensing[J]. IEEE Access, 2019, 7: 121685–121694. doi: 10.1109/ACCESS.2019.2936215
|
[10] |
LIU Yishu, CHEN Conghui, HAN Zhengzhuo, et al. High-resolution remote sensing image retrieval based on classification-similarity networks and double fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1119–1133. doi: 10.1109/JSTARS.2020.2981372
|
[11] |
储珺, 朱晓阳, 冷璐, 等. 引入通道注意力和残差学习的目标检测器[J]. 模式识别与人工智能, 2020, 33(10): 889–897. doi: 10.16451/j.cnki.issn1003-6059.202010003
CHU Jun, ZHU Xiaoyang, LENG Lu, et al. Target detector with channel attention and residual learning[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 889–897. doi: 10.16451/j.cnki.issn1003-6059.202010003
|
[12] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19.
|
[13] |
翟鹏博, 杨浩, 宋婷婷, 等. 结合注意力机制的双路径语义分割[J]. 中国图象图形学报, 2020, 25(8): 1627–1636. doi: 10.11834/jig.190533
ZHAI Pengbo, YANG Hao, SONG Tingting, et al. Two-path semantic segmentation algorithm combining attention mechanism[J]. Journal of Image and Graphics, 2020, 25(8): 1627–1636. doi: 10.11834/jig.190533
|
[14] |
WANG Qi, LIU Shaoteng, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1155–1167. doi: 10.1109/TGRS.2018.2864987
|
[15] |
GUO Yiyou, JI Jingsheng, LU Xiankai, et al. Global-local attention network for aerial scene classification[J]. IEEE Access, 2019, 7: 67200–67212. doi: 10.1109/ACCESS.2019.2918732
|
[16] |
ZHANG Shu, YUAN Qiangqiang, LI Jie, et al. Scene-adaptive remote sensing image super-resolution using a multiscale attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4764–4779. doi: 10.1109/TGRS.2020.2966805
|
[17] |
徐从安, 吕亚飞, 张筱晗, 等. 基于双重注意力机制的遥感图像场景分类特征表示方法[J]. 电子与信息学报, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
XU Congan, LÜ Yafei, ZHANG Xiaohan, et al. A Discriminative feature representation method based on dual attention mechanism for remote sensing image scene classification[J]. Journal of Electronics &Information Technology, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
|
[18] |
ZHANG Yongmei, XU Min, and LI Xiaodong. Remote sensing image retrieval based on DenseNet model and CBAM[C]. 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 2020: 86–90. doi: 10.1109/CCET50901.2020.9213121.
|
[19] |
WANG Yameng, JI Shunping, LU Meng, et al. Attention boosted bilinear pooling for remote sensing image retrieval[J]. International Journal of Remote Sensing, 2020, 41(7): 2704–2724. doi: 10.1080/01431161.2019.1697010
|
[20] |
LIU Chao, MA Jingjing, TANG Xu, et al. Deep hash learning for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3420–3443. doi: 10.1109/TGRS.2020.3007533
|
[21] |
XIONG Wei, LÜ Yafei, CUI Yaqi, et al. A discriminative feature learning approach for remote sensing image retrieval[J]. Remote Sensing, 2019, 11(3): 281. doi: 10.3390/rs11030281
|
[22] |
GE Yun, TANG Yiling, JIANG Shunliang, et al. Region-based cascade pooling of convolutional features for HRRS image retrieval[J]. Remote Sensing Letters, 2018, 9(10): 1002–1010. doi: 10.1080/2150704X.2018.1504334
|
[23] |
CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
|
[24] |
孙月驰, 李冠. 基于卷积神经网络嵌套模型的人群异常行为检测[J]. 计算机应用与软件, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036
SUN Yuechi and LI Guan. Abnormal behavior detection of crowds based on nested model of convolutional neural network[J]. Computer Applications and Software, 2019, 36(3): 196–201, 276. doi: 10.3969/j.issn.1000-386x.2019.03.036
|
[25] |
YANG Yi and NEWSAM S. Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 818–832. doi: 10.1109/TGRS.2012.2205158
|
[26] |
XIA Guisong, HU Jingwen, HU Fan, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965–3981. doi: 10.1109/TGRS.2017.2685945
|