Advanced Search
Volume 44 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHAO Kai, WEI Guanghui. Laws and Mechanism of Dual-frequency Insensitive Effect of Blocking Interference[J]. Journal of Electronics & Information Technology, 2022, 44(2): 754-759. doi: 10.11999/JEIT210037
Citation: ZHAO Kai, WEI Guanghui. Laws and Mechanism of Dual-frequency Insensitive Effect of Blocking Interference[J]. Journal of Electronics & Information Technology, 2022, 44(2): 754-759. doi: 10.11999/JEIT210037

Laws and Mechanism of Dual-frequency Insensitive Effect of Blocking Interference

doi: 10.11999/JEIT210037
  • Received Date: 2021-01-11
  • Rev Recd Date: 2021-04-14
  • Available Online: 2021-04-27
  • Publish Date: 2022-02-25
  • By introducing the 5th-order term of power series expansion, the nonlinear distortion of the system under dual -frequency interference is analyzed, and the essential reason of dual-frequency insensitive effect caused by blocking interference is revealed, which is verified by experiments. Theoretical analysis and experimental results show that when the interference signal strength is weak and the nonlinear distortion of the system is low, the transfer function can be described by the power series expansion accurate to the 3rd-order term, and the test equipment is sensitive to the effective value of the dual -frequency interference field strength; with the increase of the interference signal, the nonlinear distortion of the system increases, and the 5th-order term in the power series expansion cannot be ignored, and the higher the blocking degree is, the more serious the dual-frequency insensitive effect is.
  • loading
  • [1]
    IEC. CISPR 16–2–2 Specification for radio disturbance and immunity measuring apparatus and methods-Part 2–2: Methods of measurement of disturbances and immunity-Measurement of disturbance power[S]. IEC, 2010.
    [2]
    中国人民解放军总装备部. GJB 151B-2013 军用设备和分系统电磁发射和敏感度要求与测量[S]. 2013.

    PLA General Equipment Department. GJB 151B-2013 Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]. 2013.
    [3]
    IEC. IEC/TS 61000-1-2 Electromagnetic compatibility (EMC)-Part 1–2: General- Methodology for the achievement of functional safety of electrical and electronic systems including equipment with regard to electromagnetic phenomena[S]. IEC, 2016.
    [4]
    ARMSTRONG K. How to manage risks with regard to electromagnetic disturbances[C]. 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, 2016. doi: 10.1109/ISEMC.2016.7571610.
    [5]
    ARMSTRONG K, PISSOORT D, DEGRAEVE A, et al. Risk management of electromagnetic disturbances[C]. 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility, Suntec City, Singapore, 2018: 193–198. doi: 10.1109/ISEMC.2018.8393765.
    [6]
    RADASKY W A and ARMSTRONG K. Non-standardized immunity test techniques to help manage risks caused by EM disturbances[C]. 2016 IEEE International Symposium on Electromagnetic Compatibility, Ottawa, Canada, 2016: 84–89. doi: 10.1109/ISEMC.2016.7571614.
    [7]
    王雅平, 魏光辉, 潘晓东, 等. 通信电台带外双频干扰预测模型与试验[J]. 电子学报, 2019, 47(4): 826–831. doi: 10.3969/j.issn.0372-2112.2019.04.009

    WANG Yaping, WEI Guanghui, PAN Xiaodong, et al. Out-of-band dual frequency jamming prediction model and experiment for communication stations[J]. Acta Electronica Sinica, 2019, 47(4): 826–831. doi: 10.3969/j.issn.0372-2112.2019.04.009
    [8]
    李伟, 魏光辉, 潘晓东, 等. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11): 2782–2789. doi: 10.11999/JEIT170107

    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Interference prediction method of communication equipment under complex electromagnetic environment[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2782–2789. doi: 10.11999/JEIT170107
    [9]
    王雅平, 魏光辉, 李伟, 等. 接收机带内双频阻塞干扰机理建模与验证[J]. 北京理工大学学报, 2018, 38(7): 709–814. doi: 10.15918/j.tbit1001-0645.2018.07.008

    WANG Yaping, WEI Guanghui, LI Wei, et al. Mechanism modeling and verification of receiver with in-band dual-frequency blocking jamming[J]. Transactions of Beijing Institute of Technology, 2018, 38(7): 709–814. doi: 10.15918/j.tbit1001-0645.2018.07.008
    [10]
    LI Wei, WEI Guanghui, PAN Xiaodong, et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 520–528. doi: 10.1109/TEMC.2017.2720961
    [11]
    ZHAO Kai, WEI Guanghui, WANG Yaping, et al. Prediction model of in-band blocking interference under the electromagnetic radiation of dual-frequency continuous wave[J]. International Journal of Antennas and Propagation, 2020, 2020: 7651389. doi: 10.1155/2020/7651389
    [12]
    DOMINO W, VAKILIAN N, and AGAHI D. Polynomial model of blocker effects on LNA/mixer devices[J]. Applied Microwave & Wireless, 2001, 13(6): 30–44.
    [13]
    赵凯, 魏光辉, 潘晓东, 等. 单频电磁辐射对雷达的干扰规律[J]. 系统工程与电子技术, 2021, 43(2): 363–368. doi: 10.12305/j.issn.1001-506X.2021.02.10

    ZHAO Kai, WEI Guanghui, PAN Xiaodong, et al. Interference laws of single frequency electromagnetic radiation to radar[J]. Systems Engineering and Electronics, 2021, 43(2): 363–368. doi: 10.12305/j.issn.1001-506X.2021.02.10
    [14]
    魏光辉, 潘晓东, 万浩江. 装备电磁辐射效应规律与作用机理[M]. 北京: 国防工业出版社, 2018: 87–106.

    WEI Guanghui, PAN Xiaodong, and WAN Haojiang. Feature and Mechanism of Electromagnetic Radiation Effects for Equipment[M]. Beijing: Nation Defense Industry Press, 2018: 87–106.
    [15]
    AL-KANAN H, YANG Xianzhen, and LI Fu. Improved estimation for Saleh model and predistortion of power amplifiers using 1-dB compression point[J]. The Journal of Engineering, 2020, 2020(1): 13–18. doi: 10.1049/joe.2019.0973
    [16]
    魏光辉, 王雅平, 潘晓东, 等. 带外电磁辐射三阶互调阻塞干扰预测方法及终端设备[P]. 中国专利, 108833039, 2020.

    WEI Guanghui, WANG Yaping, PAN Xiaodong, et al. Out-of-band electromagnetic radiation third-order intermodulation barrage jamming prediction method and terminal equipment[P]. China Patent, 108833039, 2020.
    [17]
    魏光辉, 赵凯, 任仕召. 通信电台电磁辐射2阶互调低频阻塞效应与作用机理[J]. 电子与信息学报, 2020, 42(8): 2059–2064. doi: 10.11999/JEIT190574

    WEI Guanghui, ZHAO Kai, and REN Shizhao. Second-order intermodulation low frequency blocking effect and mechanism for communication radio under electromagnetic radiation[J]. Journal of Electronics &Information Technology, 2020, 42(8): 2059–2064. doi: 10.11999/JEIT190574
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (1052) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return