Citation: | Hu HAN, Yuanhang WU, Xiaoya QIN. An Interactive Graph Attention Networks Model for Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3282-3290. doi: 10.11999/JEIT210036 |
[1] |
PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 task 4: Aspect based sentiment analysis[C]. The 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 2014: 27–35. doi: 10.3115/v1/S14-2004.
|
[2] |
DING Xiaowen, LIU Bing, and YU P S. A holistic lexicon-based approach to opinion mining[C]. 2008 International Conference on Web Search and Data Mining, Palo Alto, USA, 2008: 231–240. doi: 10.1145/1341531.1341561.
|
[3] |
JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[C]. The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, USA, 2011: 151–160.
|
[4] |
KIRITCHENKO S, ZHU Xiaodan, CHERRY C, et al. NRC-Canada-2014: Detecting aspects and sentiment in customer reviews[C]. The 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 2014: 437–442. doi: 10.3115/v1/S14-2076.
|
[5] |
PAN S T, HUANG Zonghong, YUAN S S, et al. Application of hidden Markov models in speech command recognition[J]. Journal of Mechanics Engineering and Automation, 2020, 10(2): 41–45. doi: 10.17265/2159-5275/2020.02.001
|
[6] |
WANG Lei. Application research of deep convolutional neural network in computer vision[J]. Journal of Networking and Telecommunications, 2020, 2(2): 23–29. doi: 10.18282/jnt.v2i2.886
|
[7] |
DONG Li, WEI Furu, TAN Chuanqi, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]. The 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Baltimore, USA, 2014: 49–54. doi: 10.3115/v1/P14-2009.
|
[8] |
XUE Wei and LI Tao. Aspect based sentiment analysis with gated convolutional networks[C]. The 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 2018: 2514–2523. doi: 10.18653/v1/P18-1234.
|
[9] |
TANG Duyu, QIN Bing, FENG Xiaocheng, et al. Effective LSTMs for target-dependent sentiment classification[C]. COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 2016: 3298–3307.
|
[10] |
WANG Yequan, HUANG Minlie, ZHU Xiaoyan, et al. Attention-based LSTM for aspect-level sentiment classification[C]. 2016 Conference on Empirical Methods in Natural Language Processing, Austin, USA, 2016: 606–615. doi: 10.18653/v1/D16-1058.
|
[11] |
TANG Duyu, QIN Bing, and LIU Ting. Aspect level sentiment classification with deep memory network[C]. 2016 Conference on Empirical Methods in Natural Language Processing, Austin, USA, 2016: 214–224. doi: 10.18653/v1/D16-1021.
|
[12] |
MA Dehong, LI Sujian, ZHANG Xiaodong, et al. Interactive attention networks for aspect-level sentiment classification[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 4068–4074. doi: 10.24963/ijcai.2017/568.
|
[13] |
HUANG Binxuan, OU Yanglan, and CARLEY K M. Aspect level sentiment classification with attention-over-attention neural networks[C]. The 11th International Conference on Social, Cultural, and Behavioral Modeling, Washington, USA, 2018: 197–206. doi: 10.1007/978-3-319-93372-6_22.
|
[14] |
WU Zhuojia, LI Yang, LIAO Jian, et al. Aspect-context interactive attention representation for aspect-level sentiment classification[J]. IEEE Access, 2020, 8: 29238–29248. doi: 10.1109/ACCESS.2020.2972697
|
[15] |
ZHANG Chen, LI Qiuchi, and SONG Dawei. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 4568–4578. doi: 10.18653/v1/D19-1464.
|
[16] |
ZHAO Pinlong, HOU Linlin, and WU Ou. Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 193: 105443. doi: 10.1016/j.knosys.2019.105443
|
[17] |
GU Shuqin, ZHANG Lipeng, HOU Yuexian, et al. A position-aware bidirectional attention network for aspect-level sentiment[C]. The 27th International Conference on Computational Linguistics, Santa Fe, USA, 2018: 774–784.
|
[18] |
苏锦钿, 欧阳志凡, 余珊珊. 基于依存树及距离注意力的句子属性情感分类[J]. 计算机研究与发展, 2019, 56(8): 1731–1745. doi: 10.7544/issn1000-1239.2019.20190102
SU Jindian, OUYANG Zhifan, and YU Shanshan. Aspect-level sentiment classification for sentences based on dependency tree and distance attention[J]. Journal of Computer Research and Development, 2019, 56(8): 1731–1745. doi: 10.7544/issn1000-1239.2019.20190102
|
[19] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–12.
|
[20] |
PENNINGTON J, SOCHER R, and MANNING C. Glove: Global vectors for word representation[C]. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014: 1532–1543. doi: 10.3115/v1/D14-1162.
|